$p$-adic Fourier theory
Documenta mathematica, Tome 6 (2001), pp. 447-481.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we generalize work of Amice and Lazard from the early sixties. Amice determined the dual of the space of locally $Q_p$-analytic functions on $Z_p$ and showed that it is isomorphic to the ring of rigid functions on the open unit disk over $C_p$. Lazard showed that this ring has a divisor theory and that the classes of closed, finitely generated, and principal ideals in this ring coincide. We study the space of locally L-analytic functions on the ring of integers in L, where L is a finite extension of $Q_p$. We show that the dual of this space is a ring isomorphic to the ring of rigid functions on a certain rigid variety X. We show that the variety X is isomorphic to the open unit disk over $C_p$, but not over any discretely valued extension field of L; it is a "twisted form" of the open unit disk. In the ring of functions on X, the classes of closed, finitely generated, and invertible ideals coincide, but unless L=$Q_p$ not all finitely generated ideals are principal. The paper uses Lubin-Tate theory and results on p-adic Hodge theory. We give several applications, including one to the construction of p-adic L-functions for supersingular elliptic curves.
Classification : 11G05, 11G40, 11S31, 14G22, 46S10
Keywords: Fourier transform, character group, locally analytic distribution, Mahler expansion, p-adic L-function
@article{DOCMA_2001__6__a4,
     author = {Schneider, P. and Teitelbaum, J.},
     title = {$p$-adic {Fourier} theory},
     journal = {Documenta mathematica},
     pages = {447--481},
     publisher = {mathdoc},
     volume = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a4/}
}
TY  - JOUR
AU  - Schneider, P.
AU  - Teitelbaum, J.
TI  - $p$-adic Fourier theory
JO  - Documenta mathematica
PY  - 2001
SP  - 447
EP  - 481
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a4/
LA  - en
ID  - DOCMA_2001__6__a4
ER  - 
%0 Journal Article
%A Schneider, P.
%A Teitelbaum, J.
%T $p$-adic Fourier theory
%J Documenta mathematica
%D 2001
%P 447-481
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a4/
%G en
%F DOCMA_2001__6__a4
Schneider, P.; Teitelbaum, J. $p$-adic Fourier theory. Documenta mathematica, Tome 6 (2001), pp. 447-481. http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a4/