Rolling factors deformations and extensions of canonical curves
Documenta mathematica, Tome 6 (2001), pp. 185-226.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A tetragonal canonical curve is the complete intersection of two divisors on a scroll. The equations can be written in `rolling factors' format. For such homogeneous ideals we give methods to compute infinitesimal deformations. Deformations can be obstructed. For the case of quadratic equations on the scroll we derive explicit base equations. They are used to study extensions of tetragonal curves.
Classification : 14B07, 14H51, 14J28, 32S30
Keywords: tetragonal curves, rolling factors, K3 surfaces
@article{DOCMA_2001__6__a13,
     author = {Stevens, Jan},
     title = {Rolling factors deformations and extensions of canonical curves},
     journal = {Documenta mathematica},
     pages = {185--226},
     publisher = {mathdoc},
     volume = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a13/}
}
TY  - JOUR
AU  - Stevens, Jan
TI  - Rolling factors deformations and extensions of canonical curves
JO  - Documenta mathematica
PY  - 2001
SP  - 185
EP  - 226
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a13/
LA  - en
ID  - DOCMA_2001__6__a13
ER  - 
%0 Journal Article
%A Stevens, Jan
%T Rolling factors deformations and extensions of canonical curves
%J Documenta mathematica
%D 2001
%P 185-226
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a13/
%G en
%F DOCMA_2001__6__a13
Stevens, Jan. Rolling factors deformations and extensions of canonical curves. Documenta mathematica, Tome 6 (2001), pp. 185-226. http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a13/