Products of harmonic forms and rational curves
Documenta mathematica, Tome 6 (2001), pp. 227-239.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In general, the product of harmonic forms is not harmonic. We study the top exterior power of harmonic two-forms on compact Kähler manifolds. The non-harmonicity in this case is related to the geometry of the manifold and to the existence of rational curves in particular. K3 surfaces and hyperkähler manifolds are discussed in detail.
Classification : 14E05, 14J32, 32Q25
Keywords: harmonic forms, compact Kähler manifolds, Ricci-flat Kähler forms, rational curves
@article{DOCMA_2001__6__a12,
     author = {Huybrechts, Daniel},
     title = {Products of harmonic forms and rational curves},
     journal = {Documenta mathematica},
     pages = {227--239},
     publisher = {mathdoc},
     volume = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a12/}
}
TY  - JOUR
AU  - Huybrechts, Daniel
TI  - Products of harmonic forms and rational curves
JO  - Documenta mathematica
PY  - 2001
SP  - 227
EP  - 239
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a12/
LA  - en
ID  - DOCMA_2001__6__a12
ER  - 
%0 Journal Article
%A Huybrechts, Daniel
%T Products of harmonic forms and rational curves
%J Documenta mathematica
%D 2001
%P 227-239
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a12/
%G en
%F DOCMA_2001__6__a12
Huybrechts, Daniel. Products of harmonic forms and rational curves. Documenta mathematica, Tome 6 (2001), pp. 227-239. http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a12/