Extensions of stable $C^*$-algebras
Documenta mathematica, Tome 6 (2001), pp. 241-246.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that an extension of two stable $C^*$-algebras need not be stable. More explicitly we find an extension $$0 \to C(Z) \otimes {\cal K} \to A \to {\cal K} \to 0$$ for some (infinite dimensional) compact Hausdorff space $Z$ such that $A$ is not stable. The $C^*$-algebra $A$ in our example has an approximate unit consisting of projections.
Classification : 46L05, 46L35
Keywords: stable $C^*$-algebras, extensions
@article{DOCMA_2001__6__a11,
     author = {R{\o}ordam, Mikael},
     title = {Extensions of stable $C^*$-algebras},
     journal = {Documenta mathematica},
     pages = {241--246},
     publisher = {mathdoc},
     volume = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a11/}
}
TY  - JOUR
AU  - Røordam, Mikael
TI  - Extensions of stable $C^*$-algebras
JO  - Documenta mathematica
PY  - 2001
SP  - 241
EP  - 246
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a11/
LA  - en
ID  - DOCMA_2001__6__a11
ER  - 
%0 Journal Article
%A Røordam, Mikael
%T Extensions of stable $C^*$-algebras
%J Documenta mathematica
%D 2001
%P 241-246
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a11/
%G en
%F DOCMA_2001__6__a11
Røordam, Mikael. Extensions of stable $C^*$-algebras. Documenta mathematica, Tome 6 (2001), pp. 241-246. http://geodesic.mathdoc.fr/item/DOCMA_2001__6__a11/