$I_n$-local Johnson-Wilson spectra and their Hopf algebroids
Documenta mathematica, Tome 5 (2000), pp. 351-364.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a generalization $\mathcal{E}(n)$ of the Johnson-Wilson spectrum $E(n)$ for which $\mathcal{E}(n)_*$ is a local ring with maximal ideal $I_n$. We prove that the spectra $E(n), \mathcal{E}(n)$ and $\widehat{E(n)}$ are Bousfield equivalent. We also show that the Hopf algebroid $\mathcal{E}(n)_*\mathcal{E}(n)$ is a free $\mathcal{E}(n)_*$-module, generalizing a result of Adams and Clarke for $KU_*KU$.
Classification : 55N20, 55N22
Keywords: Johnson-Wilson spectrum, Hopf algebroid, localization, free module
@article{DOCMA_2000__5__a8,
     author = {Baker, Andrew},
     title = {$I_n$-local {Johnson-Wilson} spectra and their {Hopf} algebroids},
     journal = {Documenta mathematica},
     pages = {351--364},
     publisher = {mathdoc},
     volume = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a8/}
}
TY  - JOUR
AU  - Baker, Andrew
TI  - $I_n$-local Johnson-Wilson spectra and their Hopf algebroids
JO  - Documenta mathematica
PY  - 2000
SP  - 351
EP  - 364
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a8/
LA  - en
ID  - DOCMA_2000__5__a8
ER  - 
%0 Journal Article
%A Baker, Andrew
%T $I_n$-local Johnson-Wilson spectra and their Hopf algebroids
%J Documenta mathematica
%D 2000
%P 351-364
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a8/
%G en
%F DOCMA_2000__5__a8
Baker, Andrew. $I_n$-local Johnson-Wilson spectra and their Hopf algebroids. Documenta mathematica, Tome 5 (2000), pp. 351-364. http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a8/