A classification theorem for nuclear purely infinite simple $C^*$-algebras
Documenta mathematica, Tome 5 (2000), pp. 49-114.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Starting from Kirchberg's theorems announced at the operator algebra conference in Genève in 1994, namely ${\cal O}_{2} \otimes A \cong {\cal O}_{2}$ for separable unital nuclear simple $A$ and ${\cal O}_{\infty} \otimes {A} \cong A$ for separable unital nuclear purely infinite simple $A,$ we prove that $KK$-equivalence implies isomorphism for nonunital separable nuclear purely infinite simple $C^*$-algebras. It follows that if $A$ and $B$ are unital separable nuclear purely infinite simple $C^*$-algebras which satisfy the Universal Coefficient Theorem, and if there is a graded isomorphism from $K_* (A)$ to $K_* (B)$ which preserves the $K_0$-class of the identity, then $A \cong B.$
Classification : 46L35, 19K99, 46L80
@article{DOCMA_2000__5__a17,
     author = {Phillips, N.Christopher},
     title = {A classification theorem for nuclear purely infinite simple $C^*$-algebras},
     journal = {Documenta mathematica},
     pages = {49--114},
     publisher = {mathdoc},
     volume = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a17/}
}
TY  - JOUR
AU  - Phillips, N.Christopher
TI  - A classification theorem for nuclear purely infinite simple $C^*$-algebras
JO  - Documenta mathematica
PY  - 2000
SP  - 49
EP  - 114
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a17/
LA  - en
ID  - DOCMA_2000__5__a17
ER  - 
%0 Journal Article
%A Phillips, N.Christopher
%T A classification theorem for nuclear purely infinite simple $C^*$-algebras
%J Documenta mathematica
%D 2000
%P 49-114
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a17/
%G en
%F DOCMA_2000__5__a17
Phillips, N.Christopher. A classification theorem for nuclear purely infinite simple $C^*$-algebras. Documenta mathematica, Tome 5 (2000), pp. 49-114. http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a17/