Transitions from relative equilibria to relative periodic orbits
Documenta mathematica, Tome 5 (2000), pp. 227-274.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider $G$-equivariant semilinear parabolic equations where $G$ is a finite-dimensional possibly non-compact symmetry group. We treat periodic forcing of relative equilibria and resonant periodic forcing of relative periodic orbits as well as Hopf bifurcation from relative equilibria to relative periodic orbits using Lyapunov-Schmidt reduction. Our main interest are drift phenomena caused by resonance. In comparison to a center manifold approach Lyapunov-Schmidt reduction is technically easier. We discuss impacts of our results on spiral wave dynamics.
Classification : 35B32, 35K57, 57S20
Keywords: spiral waves, equivariant dynamical systems, noncompact groups
@article{DOCMA_2000__5__a12,
     author = {Wulf, Claudia},
     title = {Transitions from relative equilibria to relative periodic orbits},
     journal = {Documenta mathematica},
     pages = {227--274},
     publisher = {mathdoc},
     volume = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a12/}
}
TY  - JOUR
AU  - Wulf, Claudia
TI  - Transitions from relative equilibria to relative periodic orbits
JO  - Documenta mathematica
PY  - 2000
SP  - 227
EP  - 274
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a12/
LA  - en
ID  - DOCMA_2000__5__a12
ER  - 
%0 Journal Article
%A Wulf, Claudia
%T Transitions from relative equilibria to relative periodic orbits
%J Documenta mathematica
%D 2000
%P 227-274
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a12/
%G en
%F DOCMA_2000__5__a12
Wulf, Claudia. Transitions from relative equilibria to relative periodic orbits. Documenta mathematica, Tome 5 (2000), pp. 227-274. http://geodesic.mathdoc.fr/item/DOCMA_2000__5__a12/