On the automorphism group of a complex sphere
Documenta mathematica, Tome 4 (1999), pp. 451-462.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X$ be a compact complex threefold with the integral homology of ${\bf S}^6$ and let $Aut(X)$ be its holomorphic automorphism group. By [HKP] and [CDP] the dimension of $Aut(X)$ is at most 2. We prove that $Aut(X)$ cannot be isomorphic to the complex affine group.
Classification : 14E05, 32J17, 32M05
Keywords: compact complex threefolds, holomorphic automorphisms, flops
@article{DOCMA_1999__4__a7,
     author = {Brunella, Marco},
     title = {On the automorphism group of a complex sphere},
     journal = {Documenta mathematica},
     pages = {451--462},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a7/}
}
TY  - JOUR
AU  - Brunella, Marco
TI  - On the automorphism group of a complex sphere
JO  - Documenta mathematica
PY  - 1999
SP  - 451
EP  - 462
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a7/
LA  - en
ID  - DOCMA_1999__4__a7
ER  - 
%0 Journal Article
%A Brunella, Marco
%T On the automorphism group of a complex sphere
%J Documenta mathematica
%D 1999
%P 451-462
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a7/
%G en
%F DOCMA_1999__4__a7
Brunella, Marco. On the automorphism group of a complex sphere. Documenta mathematica, Tome 4 (1999), pp. 451-462. http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a7/