A subshift of finite type in the Takens-Bogdanov bifurcation with $D_3$ symmetry
Documenta mathematica, Tome 4 (1999), pp. 463-485.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the versal unfolding of a vector field of codimension two, that has an algebraically double eigenvalue 0 in the linearisation of the origin and is equivariant under a representation of the symmetry group $D_3$. A subshift of finite type is encountered near a clover of homoclinic orbits. The subshift encodes the itinerary along the three different homoclinic orbits. In this subshift all those symbol sequences are realized for which consecutive symbols are different. In the parameter space we also locate a transcritical, three different Hopf and two global (homoclinic) bifurcations.
Classification : 34C28, 58F14
Keywords: Takens-bogdanov, subshift of finite type, symmetry, homoclinic orbit
@article{DOCMA_1999__4__a6,
     author = {Matthies, Karsten},
     title = {A subshift of finite type in the {Takens-Bogdanov} bifurcation with $D_3$ symmetry},
     journal = {Documenta mathematica},
     pages = {463--485},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a6/}
}
TY  - JOUR
AU  - Matthies, Karsten
TI  - A subshift of finite type in the Takens-Bogdanov bifurcation with $D_3$ symmetry
JO  - Documenta mathematica
PY  - 1999
SP  - 463
EP  - 485
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a6/
LA  - en
ID  - DOCMA_1999__4__a6
ER  - 
%0 Journal Article
%A Matthies, Karsten
%T A subshift of finite type in the Takens-Bogdanov bifurcation with $D_3$ symmetry
%J Documenta mathematica
%D 1999
%P 463-485
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a6/
%G en
%F DOCMA_1999__4__a6
Matthies, Karsten. A subshift of finite type in the Takens-Bogdanov bifurcation with $D_3$ symmetry. Documenta mathematica, Tome 4 (1999), pp. 463-485. http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a6/