Permanence properties of $C^*$-exact groups
Documenta mathematica, Tome 4 (1999), pp. 513-558.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that the class of exact groups, as defined in a previous paper, is closed under various operations, such as passing to a closed subgroup and taking extensions. Taken together, these results imply, in particular, that all almost-connected locally compact groups are exact. The proofs of the permanence properties use a result relating the exactness of sequences of maps in which corresponding algebras are strongly Morita equivalent. The statement of this result is based on a notion of reduced twisted crossed product for covariant systems which are twisted in the sense of Green. The theory of these reduced twisted crossed products and the proof of the exactness result are given in the first part of the paper.
Classification : 46L05, 46L55, 22D25
@article{DOCMA_1999__4__a4,
     author = {Kirchberg, Eberhard and Wassermann, Simon},
     title = {Permanence properties of $C^*$-exact groups},
     journal = {Documenta mathematica},
     pages = {513--558},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a4/}
}
TY  - JOUR
AU  - Kirchberg, Eberhard
AU  - Wassermann, Simon
TI  - Permanence properties of $C^*$-exact groups
JO  - Documenta mathematica
PY  - 1999
SP  - 513
EP  - 558
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a4/
LA  - en
ID  - DOCMA_1999__4__a4
ER  - 
%0 Journal Article
%A Kirchberg, Eberhard
%A Wassermann, Simon
%T Permanence properties of $C^*$-exact groups
%J Documenta mathematica
%D 1999
%P 513-558
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a4/
%G en
%F DOCMA_1999__4__a4
Kirchberg, Eberhard; Wassermann, Simon. Permanence properties of $C^*$-exact groups. Documenta mathematica, Tome 4 (1999), pp. 513-558. http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a4/