Metrics on state spaces
Documenta mathematica, Tome 4 (1999), pp. 559-600.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In contrast to the usual Lipschitz seminorms associated to ordinary metrics on compact spaces, we show by examples that Lipschitz seminorms on possibly non-commutative compact spaces are usually not determined by the restriction of the metric they define on the state space, to the extreme points of the state space. We characterize the Lipschitz norms which are determined by their metric on the whole state space as being those which are lower semicontinuous. We show that their domain of Lipschitz elements can be enlarged so as to form a dual Banach space, which generalizes the situation for ordinary Lipschitz seminorms. We give a characterization of the metrics on state spaces which come from Lipschitz seminorms. The natural (broader) setting for these results is provided by the "function spaces" of Kadison. A variety of methods for constructing Lipschitz seminorms is indicated.
Classification : 46L87, 58B30, 60B10
@article{DOCMA_1999__4__a3,
     author = {Rieffel, Marc A.},
     title = {Metrics on state spaces},
     journal = {Documenta mathematica},
     pages = {559--600},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a3/}
}
TY  - JOUR
AU  - Rieffel, Marc A.
TI  - Metrics on state spaces
JO  - Documenta mathematica
PY  - 1999
SP  - 559
EP  - 600
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a3/
LA  - en
ID  - DOCMA_1999__4__a3
ER  - 
%0 Journal Article
%A Rieffel, Marc A.
%T Metrics on state spaces
%J Documenta mathematica
%D 1999
%P 559-600
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a3/
%G en
%F DOCMA_1999__4__a3
Rieffel, Marc A. Metrics on state spaces. Documenta mathematica, Tome 4 (1999), pp. 559-600. http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a3/