Singularities, double points, controlled topology and chain duality
Documenta mathematica, Tome 4 (1999), pp. 1-59.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A manifold is a Poincaré duality space without singularities. McCrory obtained a homological criterion of a global nature for deciding if a polyhedral Poincaré duality space is a homology manifold, i.e. if the singularities are homologically inessential. A homeomorphism of manifolds is a degree 1 map without double points. In this paper combinatorially controlled topology and chain complex methods are used to provide a homological criterion of a global nature for deciding if a degree 1 map of polyhedral homology manifolds has acyclic point inverses, i.e. if the double points are homologically inessential.
Classification : 55N45, 57R67, 55U35
Keywords: manifold, Poincaré space, singularity, controlled topology, chain duality
@article{DOCMA_1999__4__a19,
     author = {Ranicki, Andrew},
     title = {Singularities, double points, controlled topology and chain duality},
     journal = {Documenta mathematica},
     pages = {1--59},
     publisher = {mathdoc},
     volume = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a19/}
}
TY  - JOUR
AU  - Ranicki, Andrew
TI  - Singularities, double points, controlled topology and chain duality
JO  - Documenta mathematica
PY  - 1999
SP  - 1
EP  - 59
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a19/
LA  - en
ID  - DOCMA_1999__4__a19
ER  - 
%0 Journal Article
%A Ranicki, Andrew
%T Singularities, double points, controlled topology and chain duality
%J Documenta mathematica
%D 1999
%P 1-59
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a19/
%G en
%F DOCMA_1999__4__a19
Ranicki, Andrew. Singularities, double points, controlled topology and chain duality. Documenta mathematica, Tome 4 (1999), pp. 1-59. http://geodesic.mathdoc.fr/item/DOCMA_1999__4__a19/