Stochastic coalescence
Documenta mathematica, ICM Berlin 1998, Vol. III (1998), pp. 205-211.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Consider $N$ particles, which merge into clusters according to the rule: a cluster of size $x$ and a cluster of size $y$ merge at (stochastic) rate $K(x,y)/N$, where $K$ is a specified rate kernel. This Marcus-Lushnikov model of coalescence, and the underlying deterministic approximation provided by the Smoluchowski coagulation equations, have an extensive scientific literature. A recent reformulation is the general stochastic coalescent, whose state space is the infinite-dimensional simplex (the state ${\bold x} =(x_i, i\ge 1)$ represents unit mass split into clusters of masses $x_i)$, and which evolves by clusters of masses $x_i$ and $x_j$ coalescing at rate $K(x_i,x_j)$. Existing mathematical literature (Kingman's coalescent, component sizes in random graphs, fragmentation of random trees) implicitly studies certain special cases. Recent work has uncovered deeper constructions of special cases of the stochastic coalescent in terms of Brownian-type processes. Rigorous study of general kernels has only just begun, and many challenging open problems remain.
Classification : 60J25, 60K35
Keywords: continuum tree, gelation, random graph, random tree, Smoluchowski coagulation equation
@article{DOCMA_1998__S9__a57,
     author = {Aldous, David J.},
     title = {Stochastic coalescence},
     journal = {Documenta mathematica},
     pages = {205--211},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. III},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a57/}
}
TY  - JOUR
AU  - Aldous, David J.
TI  - Stochastic coalescence
JO  - Documenta mathematica
PY  - 1998
SP  - 205
EP  - 211
VL  - ICM Berlin 1998, Vol. III
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a57/
LA  - en
ID  - DOCMA_1998__S9__a57
ER  - 
%0 Journal Article
%A Aldous, David J.
%T Stochastic coalescence
%J Documenta mathematica
%D 1998
%P 205-211
%V ICM Berlin 1998, Vol. III
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a57/
%G en
%F DOCMA_1998__S9__a57
Aldous, David J. Stochastic coalescence. Documenta mathematica, ICM Berlin 1998, Vol. III (1998), pp. 205-211. http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a57/