Multisegment duality, canonical bases and total positivity
Documenta mathematica, ICM Berlin 1998, Vol. III (1998), pp. 409-417.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Classification : 05E10, 05E05, 20G05, 20C30, 14M15
Keywords: quivers, canonical bases, total positivity, representation, Young tableaux, piecewise-linear involution, multisegment duality, plactic monoid
@article{DOCMA_1998__S9__a38,
     author = {Zelevinsky, Andrei},
     title = {Multisegment duality, canonical bases and total positivity},
     journal = {Documenta mathematica},
     pages = {409--417},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. III},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a38/}
}
TY  - JOUR
AU  - Zelevinsky, Andrei
TI  - Multisegment duality, canonical bases and total positivity
JO  - Documenta mathematica
PY  - 1998
SP  - 409
EP  - 417
VL  - ICM Berlin 1998, Vol. III
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a38/
LA  - en
ID  - DOCMA_1998__S9__a38
ER  - 
%0 Journal Article
%A Zelevinsky, Andrei
%T Multisegment duality, canonical bases and total positivity
%J Documenta mathematica
%D 1998
%P 409-417
%V ICM Berlin 1998, Vol. III
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a38/
%G en
%F DOCMA_1998__S9__a38
Zelevinsky, Andrei. Multisegment duality, canonical bases and total positivity. Documenta mathematica, ICM Berlin 1998, Vol. III (1998), pp. 409-417. http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a38/