Optimal dynamic instability of microtubules
Documenta mathematica, ICM Berlin 1998, Vol. III (1998), pp. 633-642.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Microtubules are polymers that play many important structural and functional roles within biological cells, including the separation of newly replicated chromosomes into the daughter cells during cell division. In order to catch the chromosomes that they must transport, microtubules grow out of the centrosome in each of the daughter cells. For any particular microtubule, epochs of steady growth are punctuated by episodes of rapid decay; this is known as dynamic instability. It allows for multiple attempts on the part of each microtubule to hit the small target at the center of each chromosome known as the kinetochore, where the microtubule can attach and apply traction to the chromosome. The optimal design of dynamic instability is the subject of this paper.
Classification : 92C40, 92C05, 92C45
Keywords: polymerization, chromosomes, microtubules, dynamic instability, kinetochore
@article{DOCMA_1998__S9__a17,
     author = {Peskin, Charles S.},
     title = {Optimal dynamic instability of microtubules},
     journal = {Documenta mathematica},
     pages = {633--642},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. III},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a17/}
}
TY  - JOUR
AU  - Peskin, Charles S.
TI  - Optimal dynamic instability of microtubules
JO  - Documenta mathematica
PY  - 1998
SP  - 633
EP  - 642
VL  - ICM Berlin 1998, Vol. III
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a17/
LA  - en
ID  - DOCMA_1998__S9__a17
ER  - 
%0 Journal Article
%A Peskin, Charles S.
%T Optimal dynamic instability of microtubules
%J Documenta mathematica
%D 1998
%P 633-642
%V ICM Berlin 1998, Vol. III
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a17/
%G en
%F DOCMA_1998__S9__a17
Peskin, Charles S. Optimal dynamic instability of microtubules. Documenta mathematica, ICM Berlin 1998, Vol. III (1998), pp. 633-642. http://geodesic.mathdoc.fr/item/DOCMA_1998__S9__a17/