Developments from nonharmonic Fourier series
Documenta mathematica, ICM Berlin 1998, Vol. II (1998), pp. 713-722.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We begin this survey by showing that Paley and Wiener's unconditional basis problem for nonharmonic Fourier series can be understood as a problem about weighted norm inequalities for Hilbert operators. Then we reformulate the basis problem in a more general setting, and discuss Beurling-type density theorems for sampling and interpolation. Next, we state some multiplier theorems, of a similar nature as the famous Beurling-Malliavin theorem, and sketch their role in the subject. Finally, we discuss extensions of nonharmonic Fourier series to weighted Paley-Wiener spaces, and indicate how these spaces are explored via de Branges' Hilbert spaces of entire functions.
Classification : 42C30, 46E22, 42C40, 42B15, 30D20
Keywords: nonharmonic Fourier series, weighted norm inequalities, Beurling-type density theorems, sampling, interpolation, multiplier theorems, weighted Paley-Wiener spaces
@article{DOCMA_1998__S8__a14,
     author = {Seip, Kristian},
     title = {Developments from nonharmonic {Fourier} series},
     journal = {Documenta mathematica},
     pages = {713--722},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. II},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S8__a14/}
}
TY  - JOUR
AU  - Seip, Kristian
TI  - Developments from nonharmonic Fourier series
JO  - Documenta mathematica
PY  - 1998
SP  - 713
EP  - 722
VL  - ICM Berlin 1998, Vol. II
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S8__a14/
LA  - en
ID  - DOCMA_1998__S8__a14
ER  - 
%0 Journal Article
%A Seip, Kristian
%T Developments from nonharmonic Fourier series
%J Documenta mathematica
%D 1998
%P 713-722
%V ICM Berlin 1998, Vol. II
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S8__a14/
%G en
%F DOCMA_1998__S8__a14
Seip, Kristian. Developments from nonharmonic Fourier series. Documenta mathematica, ICM Berlin 1998, Vol. II (1998), pp. 713-722. http://geodesic.mathdoc.fr/item/DOCMA_1998__S8__a14/