Fourier analysis and Szemerédi's theorem
Documenta mathematica, ICM Berlin 1998, Vol. I (1998), pp. 617-629.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The famous theorem of Szemerédi asserts that for every positive integer $k$ and every positive real number $\delta>0$ there is a positive integer $N$ such that every subset of $\{1,2,\cdots,N\}$ of cardinality at least $\delta N$ contains an arithmetic progression of length $k$. A second proof of the theorem was given by Furstenberg using ergodic theory, but neither this proof nor Szemerédi's gave anything other than extremely weak information about the dependence of $N$ on $k$ and $\delta$. In this article we describe a new, more quantitative approach to Szemerédi's theorem which greatly improves the best known bound when $k=4$, and which will probably do the same for general $k$. See also Geom. Funct. Anal. 8, 529-551 (1998; Zbl 0907.11005), A new proof of Szemerédi's theorem, ibid. 11, 465-588 (2001; Zbl 1028.11005).
Classification : 11B25, 11P99
Keywords: theorem of Szemerédi, arithmetic progression, quantitative approach
@article{DOCMA_1998__S10__a4,
     author = {Gowers, W.T.},
     title = {Fourier analysis and {Szemer\'edi's} theorem},
     journal = {Documenta mathematica},
     pages = {617--629},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. I},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a4/}
}
TY  - JOUR
AU  - Gowers, W.T.
TI  - Fourier analysis and Szemerédi's theorem
JO  - Documenta mathematica
PY  - 1998
SP  - 617
EP  - 629
VL  - ICM Berlin 1998, Vol. I
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a4/
LA  - en
ID  - DOCMA_1998__S10__a4
ER  - 
%0 Journal Article
%A Gowers, W.T.
%T Fourier analysis and Szemerédi's theorem
%J Documenta mathematica
%D 1998
%P 617-629
%V ICM Berlin 1998, Vol. I
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a4/
%G en
%F DOCMA_1998__S10__a4
Gowers, W.T. Fourier analysis and Szemerédi's theorem. Documenta mathematica, ICM Berlin 1998, Vol. I (1998), pp. 617-629. http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a4/