Local index theory and higher analytic torsion
Documenta mathematica, ICM Berlin 1998, Vol. I (1998), pp. 143-162.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We report on the construction of secondary invariants in connection with the Atiyah-Singer index theorem for families, and the Theorem of Riemann-Roch-Grothendieck. The local families index theorem plays an important role in the construction. In complex geometry, the corresponding objects are the analytic torsion forms and the analytic torsion currents. These objects exhibit natural functorial properties with respect to composition of maps. Gillet and Soulé have used these objects to prove a Riemann-Roch theorem in Arakelov geometry. Also we state a Riemann-Roch theorem for flat vector bundles, and report on the construction of corresponding higher analytic torsion forms.
Classification : 58J20, 58J52, 32L10
Keywords: sheaves and cohomology of sections of holomorphic vector bundles, characteristic classes and numbers, secondary invariant, Atiyah-Singer index theorem, theorem of Riemann-Roch-Grothendieck, local families index theorem, analytic torsion forms, analytic torsion currents, flat vector bundles
@article{DOCMA_1998__S10__a26,
     author = {Bismut, Jean-Michel},
     title = {Local index theory and higher analytic torsion},
     journal = {Documenta mathematica},
     pages = {143--162},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. I},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a26/}
}
TY  - JOUR
AU  - Bismut, Jean-Michel
TI  - Local index theory and higher analytic torsion
JO  - Documenta mathematica
PY  - 1998
SP  - 143
EP  - 162
VL  - ICM Berlin 1998, Vol. I
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a26/
LA  - en
ID  - DOCMA_1998__S10__a26
ER  - 
%0 Journal Article
%A Bismut, Jean-Michel
%T Local index theory and higher analytic torsion
%J Documenta mathematica
%D 1998
%P 143-162
%V ICM Berlin 1998, Vol. I
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a26/
%G en
%F DOCMA_1998__S10__a26
Bismut, Jean-Michel. Local index theory and higher analytic torsion. Documenta mathematica, ICM Berlin 1998, Vol. I (1998), pp. 143-162. http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a26/