Chaotic hypothesis and universal large deviations properties
Documenta mathematica, ICM Berlin 1998, Vol. I (1998), pp. 205-233.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Chaotic systems arise naturally in Statistical Mechanics and in Fluid Dynamics. A paradigm for their modelization are smooth hyperbolic systems. Are there consequences that can be drawn simply by assuming that a system is hyperbolic? Here we present a few model independent general consequences which may have some relevance for the physics of chaotic systems.
Classification : 37D20, 37D45, 37A60, 82B05, 76F99
Keywords: Anosov maps, reversibility, chaotic systems, large deviation, smooth hyperbolic systems
@article{DOCMA_1998__S10__a23,
     author = {Gallavotti, Giovanni},
     title = {Chaotic hypothesis and universal large deviations properties},
     journal = {Documenta mathematica},
     pages = {205--233},
     publisher = {mathdoc},
     volume = {ICM Berlin 1998, Vol. I},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a23/}
}
TY  - JOUR
AU  - Gallavotti, Giovanni
TI  - Chaotic hypothesis and universal large deviations properties
JO  - Documenta mathematica
PY  - 1998
SP  - 205
EP  - 233
VL  - ICM Berlin 1998, Vol. I
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a23/
LA  - en
ID  - DOCMA_1998__S10__a23
ER  - 
%0 Journal Article
%A Gallavotti, Giovanni
%T Chaotic hypothesis and universal large deviations properties
%J Documenta mathematica
%D 1998
%P 205-233
%V ICM Berlin 1998, Vol. I
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a23/
%G en
%F DOCMA_1998__S10__a23
Gallavotti, Giovanni. Chaotic hypothesis and universal large deviations properties. Documenta mathematica, ICM Berlin 1998, Vol. I (1998), pp. 205-233. http://geodesic.mathdoc.fr/item/DOCMA_1998__S10__a23/