Which moments of a logarithmic derivative imply quasiinvariance
Documenta mathematica, Tome 3 (1998), pp. 261-272.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In many special contexts quasiinvariance of a measure under a one-parameter group of transformations has been established. A remarkable classical general result of A.V. Skorokhod citeSkorokhod74 states that a measure $\mu$ on a Hilbert space is quasiinvariant in a given direction if it has a logarithmic derivative $\beta$ in this direction such that $e^{a|\beta|}$ is $\mu$-integrable for some $a > 0$. In this note we use the techniques of citeSmolyanov-Weizsaecker93 to extend this result to general one-parameter families of measures and moreover we give a complete characterization of all functions $\psi:[0,\infty) \rightarrow [0,\infty)$ for which the integrability of $\psi(|\beta|)$ implies quasiinvariance of $\mu$. If $\psi$ is convex then a necessary and sufficient condition is that $\log \psi(x)/{x^2}$ is not integrable at $ \infty$.
Classification : 26, A, 12, 28, C, 20, 60, G, 30
@article{DOCMA_1998__3__a8,
     author = {Scheutzow, Michael and von Weizs\"acker, Heinrich},
     title = {Which moments of a logarithmic derivative imply quasiinvariance},
     journal = {Documenta mathematica},
     pages = {261--272},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a8/}
}
TY  - JOUR
AU  - Scheutzow, Michael
AU  - von Weizsäcker, Heinrich
TI  - Which moments of a logarithmic derivative imply quasiinvariance
JO  - Documenta mathematica
PY  - 1998
SP  - 261
EP  - 272
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a8/
LA  - en
ID  - DOCMA_1998__3__a8
ER  - 
%0 Journal Article
%A Scheutzow, Michael
%A von Weizsäcker, Heinrich
%T Which moments of a logarithmic derivative imply quasiinvariance
%J Documenta mathematica
%D 1998
%P 261-272
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a8/
%G en
%F DOCMA_1998__3__a8
Scheutzow, Michael; von Weizsäcker, Heinrich. Which moments of a logarithmic derivative imply quasiinvariance. Documenta mathematica, Tome 3 (1998), pp. 261-272. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a8/