A note on the global Langlands conjecture.
Documenta mathematica, Tome 3 (1998), pp. 285-296.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The theory of base change is used to give some new examples of the Global Langlands Conjecture. The Galois representations involved have solvable image and are not monomial, although some multiple of them in the Grothendieck group is monomial. Thus, it gives nothing new about Artin's Conjecture itself. An application is given to a question which arises in studying multiplicities of cuspidal representations of $SL_n$. We explain how the (conjectural) adjoint lifting can prove GLC for a family of representations containing the tetrahedral 2-dimensional ones.
Classification : 11R39, 11F70, 22E55
@article{DOCMA_1998__3__a6,
     author = {Lapid, Erez M.},
     title = {A note on the global {Langlands} conjecture.},
     journal = {Documenta mathematica},
     pages = {285--296},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a6/}
}
TY  - JOUR
AU  - Lapid, Erez M.
TI  - A note on the global Langlands conjecture.
JO  - Documenta mathematica
PY  - 1998
SP  - 285
EP  - 296
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a6/
LA  - en
ID  - DOCMA_1998__3__a6
ER  - 
%0 Journal Article
%A Lapid, Erez M.
%T A note on the global Langlands conjecture.
%J Documenta mathematica
%D 1998
%P 285-296
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a6/
%G en
%F DOCMA_1998__3__a6
Lapid, Erez M. A note on the global Langlands conjecture.. Documenta mathematica, Tome 3 (1998), pp. 285-296. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a6/