Local heights on Abelian varieties and rigid analytic uniformization
Documenta mathematica, Tome 3 (1998), pp. 301-319.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We express classical and $p$-adic local height pairings on an abelian variety with split semistable reduction in terms of the corresponding pairings on the abelian part of the Raynaud extension (which has good reduction). Here we use an approach to height pairings via splittings of biextensions which is due to Mazur and Tate. We conclude with a formula comparing Schneider's $p$-adic height pairing to the $p$-adic height pairing in the semistable ordinary reduction case defined by Mazur and Tate.
Classification : 11G10, 11G25, 14G20
@article{DOCMA_1998__3__a4,
     author = {Werner, Annette},
     title = {Local heights on {Abelian} varieties and rigid analytic uniformization},
     journal = {Documenta mathematica},
     pages = {301--319},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a4/}
}
TY  - JOUR
AU  - Werner, Annette
TI  - Local heights on Abelian varieties and rigid analytic uniformization
JO  - Documenta mathematica
PY  - 1998
SP  - 301
EP  - 319
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a4/
LA  - en
ID  - DOCMA_1998__3__a4
ER  - 
%0 Journal Article
%A Werner, Annette
%T Local heights on Abelian varieties and rigid analytic uniformization
%J Documenta mathematica
%D 1998
%P 301-319
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a4/
%G en
%F DOCMA_1998__3__a4
Werner, Annette. Local heights on Abelian varieties and rigid analytic uniformization. Documenta mathematica, Tome 3 (1998), pp. 301-319. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a4/