Simple models of quasihomogeneous projective 3-folds
Documenta mathematica, Tome 3 (1998), pp. 15-26.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X$ be a projective complex 3-fold, quasihomogeneous with respect to an action of a linear algebraic group. We show that $X$ is a compactification of $SL_2/\Gamma, \Gamma$ a finite subgroup, or that $X$ can be equivariantly transformed into $\Pthree$, the quadric $\QZ_3$, or into certain quasihomogeneous bundles with very simple structure.
Classification : 14M17, 14L30, 32M12
@article{DOCMA_1998__3__a14,
     author = {Kebekus, Stefan},
     title = {Simple models of quasihomogeneous projective 3-folds},
     journal = {Documenta mathematica},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a14/}
}
TY  - JOUR
AU  - Kebekus, Stefan
TI  - Simple models of quasihomogeneous projective 3-folds
JO  - Documenta mathematica
PY  - 1998
SP  - 15
EP  - 26
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a14/
LA  - en
ID  - DOCMA_1998__3__a14
ER  - 
%0 Journal Article
%A Kebekus, Stefan
%T Simple models of quasihomogeneous projective 3-folds
%J Documenta mathematica
%D 1998
%P 15-26
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a14/
%G en
%F DOCMA_1998__3__a14
Kebekus, Stefan. Simple models of quasihomogeneous projective 3-folds. Documenta mathematica, Tome 3 (1998), pp. 15-26. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a14/