On 14-dimensional quadratic forms in $I^3$, 8-dimensional forms in $I^2$, and the common value property
Documenta mathematica, Tome 3 (1998), pp. 189-214.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $F$ be a field of characteristic $\neq 2$. We define certain properties $D(n), n\in\{ 2,4,8,14\}$, of $F$ as follows : $F$ has property $D(14)$ if each quadratic form $\varphi\in I^3F$ of dimension $14$ is similar to the difference of the pure parts of two 3-fold Pfister forms; $F$ has property $D(8)$ if each form $\varphi\in I^2F$ of dimension 8 whose Clifford invariant can be represented by a biquaternion algebra is isometric to the orthogonal sum of two forms similar to 2-fold Pfister forms; $F$ has property $D(4)$ if any two 4-dimensional forms over $F$ of the same determinant which become isometric over some quadratic extension always have (up to similarity) a common binary subform; $F$ has property $D(2)$ if for any two binary forms over $F$ and for any quadratic extension $E/F$ we have that if the two binary forms represent over $E$ a common nonzero element, then they represent over $E$ a common nonzero element in $F$. Property $D(2)$ has been studied earlier by Leep, Shapiro, Wadsworth and the second author. In particular, fields where $D(2)$ does not hold have been known to exist.
Classification : 11E04, 11E16, 11E81, 16K20
@article{DOCMA_1998__3__a11,
     author = {Hoffmann, Detlef W. and Tignol, Jean-Pierre},
     title = {On 14-dimensional quadratic forms in $I^3$, 8-dimensional forms in $I^2$, and the common value property},
     journal = {Documenta mathematica},
     pages = {189--214},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a11/}
}
TY  - JOUR
AU  - Hoffmann, Detlef W.
AU  - Tignol, Jean-Pierre
TI  - On 14-dimensional quadratic forms in $I^3$, 8-dimensional forms in $I^2$, and the common value property
JO  - Documenta mathematica
PY  - 1998
SP  - 189
EP  - 214
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a11/
LA  - en
ID  - DOCMA_1998__3__a11
ER  - 
%0 Journal Article
%A Hoffmann, Detlef W.
%A Tignol, Jean-Pierre
%T On 14-dimensional quadratic forms in $I^3$, 8-dimensional forms in $I^2$, and the common value property
%J Documenta mathematica
%D 1998
%P 189-214
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a11/
%G en
%F DOCMA_1998__3__a11
Hoffmann, Detlef W.; Tignol, Jean-Pierre. On 14-dimensional quadratic forms in $I^3$, 8-dimensional forms in $I^2$, and the common value property. Documenta mathematica, Tome 3 (1998), pp. 189-214. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a11/