Metrics on states from actions of compact groups
Documenta mathematica, Tome 3 (1998), pp. 215-230.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let a compact Lie group act ergodically on a unital $C^*$-algebra $A$. We consider several ways of using this structure to define metrics on the state space of $A$. These ways involve length functions, norms on the Lie algebra, and Dirac operators. The main thrust is to verify that the corresponding metric topologies on the state space agree with the weak-* topology.
Classification : 46L87, 58B30, 60B10
@article{DOCMA_1998__3__a10,
     author = {Rieffel, Marc A.},
     title = {Metrics on states from actions of compact groups},
     journal = {Documenta mathematica},
     pages = {215--230},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a10/}
}
TY  - JOUR
AU  - Rieffel, Marc A.
TI  - Metrics on states from actions of compact groups
JO  - Documenta mathematica
PY  - 1998
SP  - 215
EP  - 230
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a10/
LA  - en
ID  - DOCMA_1998__3__a10
ER  - 
%0 Journal Article
%A Rieffel, Marc A.
%T Metrics on states from actions of compact groups
%J Documenta mathematica
%D 1998
%P 215-230
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a10/
%G en
%F DOCMA_1998__3__a10
Rieffel, Marc A. Metrics on states from actions of compact groups. Documenta mathematica, Tome 3 (1998), pp. 215-230. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a10/