Motivic equivalence of quadratic forms
Documenta mathematica, Tome 3 (1998), pp. 341-351.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X_\phi$ and $X_\psi$ be projective quadrics corresponding to quadratic forms $\phi$ and $\psi$ over a field $F$. If $X_\phi$ is isomorphic to $X_\psi$ in the category of Chow motives, we say that $\phi$ and $\psi$ are motivic isomorphic and write $\phi\msim\psi$. We show that in the case of odd-dimensional forms the condition $\phi\msim\psi$ is equivalent to the similarity of $\phi$ and $\psi$. After this, we discuss the case of even-dimensional forms. In particular, we construct examples of generalized Albert forms $q_1$ and $q_2$ such that $q_1\msim q_2$ and $q_1\not\sim q_2$.
Classification : 11E81, 19E15
Keywords: quadratic form, quadric, Pfister form, Chow motives
@article{DOCMA_1998__3__a1,
     author = {Izhboldin, Oleg T.},
     title = {Motivic equivalence of quadratic forms},
     journal = {Documenta mathematica},
     pages = {341--351},
     publisher = {mathdoc},
     volume = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a1/}
}
TY  - JOUR
AU  - Izhboldin, Oleg T.
TI  - Motivic equivalence of quadratic forms
JO  - Documenta mathematica
PY  - 1998
SP  - 341
EP  - 351
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a1/
LA  - en
ID  - DOCMA_1998__3__a1
ER  - 
%0 Journal Article
%A Izhboldin, Oleg T.
%T Motivic equivalence of quadratic forms
%J Documenta mathematica
%D 1998
%P 341-351
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a1/
%G en
%F DOCMA_1998__3__a1
Izhboldin, Oleg T. Motivic equivalence of quadratic forms. Documenta mathematica, Tome 3 (1998), pp. 341-351. http://geodesic.mathdoc.fr/item/DOCMA_1998__3__a1/