Compact complex manifolds with numerically effective cotangent bundles
Documenta mathematica, Tome 2 (1997), pp. 183-193.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that a projective manifold of dimension $n=2$ or 3 and Kodaira dimension 1 has a numerically effective cotangent bundle if and only if the Iitaka fibration is almost smooth, i.e. the only singular fibres are multiples of smooth elliptic curves ($n=2$) resp. multiples of smooth Abelian or hyperelliptic surfaces ($n=3$). In the case of a threefold which is fibred over a rational curve the proof needs an extra assumption concerning the multiplicities of the singular fibres. Furthermore, we prove the following theorem: let $X$ be a complex manifold which is hyberbolic with respect to the Carathéodory-Reiffen-pseudometric, then any compact quotient of $X$ has a numerically effective cotangent bundle.
Classification : 32C10, 32H20
@article{DOCMA_1997__2__a8,
     author = {Kratz, Henrik},
     title = {Compact complex manifolds with numerically effective cotangent bundles},
     journal = {Documenta mathematica},
     pages = {183--193},
     publisher = {mathdoc},
     volume = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a8/}
}
TY  - JOUR
AU  - Kratz, Henrik
TI  - Compact complex manifolds with numerically effective cotangent bundles
JO  - Documenta mathematica
PY  - 1997
SP  - 183
EP  - 193
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a8/
LA  - en
ID  - DOCMA_1997__2__a8
ER  - 
%0 Journal Article
%A Kratz, Henrik
%T Compact complex manifolds with numerically effective cotangent bundles
%J Documenta mathematica
%D 1997
%P 183-193
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a8/
%G en
%F DOCMA_1997__2__a8
Kratz, Henrik. Compact complex manifolds with numerically effective cotangent bundles. Documenta mathematica, Tome 2 (1997), pp. 183-193. http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a8/