Maps onto certain Fano threefolds
Documenta mathematica, Tome 2 (1997), pp. 195-211.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that if $X$ is a smooth projective threefold with $b_2=1$ and $Y$ is a Fano threefold with $b_2=1$, then for a non-constant map $f:X\rightarrow Y$, the degree of $f$ is bounded in terms of the discrete invariants of $X$ and $Y$. Also, we obtain some stronger restrictions on maps between certain Fano threefolds.
Classification : 14E99, 14J45
@article{DOCMA_1997__2__a7,
     author = {Amerik, Ekaterina},
     title = {Maps onto certain {Fano} threefolds},
     journal = {Documenta mathematica},
     pages = {195--211},
     publisher = {mathdoc},
     volume = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a7/}
}
TY  - JOUR
AU  - Amerik, Ekaterina
TI  - Maps onto certain Fano threefolds
JO  - Documenta mathematica
PY  - 1997
SP  - 195
EP  - 211
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a7/
LA  - en
ID  - DOCMA_1997__2__a7
ER  - 
%0 Journal Article
%A Amerik, Ekaterina
%T Maps onto certain Fano threefolds
%J Documenta mathematica
%D 1997
%P 195-211
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a7/
%G en
%F DOCMA_1997__2__a7
Amerik, Ekaterina. Maps onto certain Fano threefolds. Documenta mathematica, Tome 2 (1997), pp. 195-211. http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a7/