Higher index theorems and the boundary map in cyclic cohomology
Documenta mathematica, Tome 2 (1997), pp. 263-295.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the Chern--Connes character induces a natural transformation from the six term exact sequence in (lower) algebraic $K$--Theory to the periodic cyclic homology exact sequence obtained by Cuntz and Quillen, and we argue that this amounts to a general "higher index theorem." In order to compute the boundary map of the periodic cyclic cohomology exact sequence, we show that it satisfies properties similar to the properties satisfied by the boundary map of the singular cohomology long exact sequence. As an application, we obtain a new proof of the Connes--Moscovici index theorem for coverings.
Classification : 19K56, 19D55, 46L80, 58G12
Keywords: cyclic cohomology, algebraic $K$-theory, index morphism, etale groupoid, higher index theorem
@article{DOCMA_1997__2__a5,
     author = {Nistor, Victor},
     title = {Higher index theorems and the boundary map in cyclic cohomology},
     journal = {Documenta mathematica},
     pages = {263--295},
     publisher = {mathdoc},
     volume = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a5/}
}
TY  - JOUR
AU  - Nistor, Victor
TI  - Higher index theorems and the boundary map in cyclic cohomology
JO  - Documenta mathematica
PY  - 1997
SP  - 263
EP  - 295
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a5/
LA  - en
ID  - DOCMA_1997__2__a5
ER  - 
%0 Journal Article
%A Nistor, Victor
%T Higher index theorems and the boundary map in cyclic cohomology
%J Documenta mathematica
%D 1997
%P 263-295
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a5/
%G en
%F DOCMA_1997__2__a5
Nistor, Victor. Higher index theorems and the boundary map in cyclic cohomology. Documenta mathematica, Tome 2 (1997), pp. 263-295. http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a5/