On the approximation numbers of large Toeplitz matrices
Documenta mathematica, Tome 2 (1997), pp. 1-29.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The $k$th approximation number $\skp(A_n)$ of a complex $\ntn$ matrix $A_n$ is defined as the distance of $A_n$ to the $\ntn$ matrices of rank at most $n-k$. The distance is measured in the matrix norm associated with the $l^p$ norm $(1\iy)$ on $\bC^n$. In the case $p=2$, the approximation numbers coincide with the singular values.
Classification : 47B35, 15A09, 15A18, 15A60, 47A75, 47A58, 47N50, 65F35
@article{DOCMA_1997__2__a14,
     author = {B\"ottcher, A.},
     title = {On the approximation numbers of large {Toeplitz} matrices},
     journal = {Documenta mathematica},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a14/}
}
TY  - JOUR
AU  - Böttcher, A.
TI  - On the approximation numbers of large Toeplitz matrices
JO  - Documenta mathematica
PY  - 1997
SP  - 1
EP  - 29
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a14/
LA  - en
ID  - DOCMA_1997__2__a14
ER  - 
%0 Journal Article
%A Böttcher, A.
%T On the approximation numbers of large Toeplitz matrices
%J Documenta mathematica
%D 1997
%P 1-29
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a14/
%G en
%F DOCMA_1997__2__a14
Böttcher, A. On the approximation numbers of large Toeplitz matrices. Documenta mathematica, Tome 2 (1997), pp. 1-29. http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a14/