Selmer groups and torsion zero cycles on the selfproduct of a semistable elliptic curve
Documenta mathematica, Tome 2 (1997), pp. 47-59.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we extend the finiteness result on the $p$-primary torsion subgroup in the Chow group of zero cycles on the selfproduct of a semistable elliptic curve obtained in joint work with S. Saito to primes $p$ dividing the conductor. On the way we show the finiteness of the Selmer group associated to the symmetric square of the elliptic curve for those primes. The proof uses $p$-adic techniques, in particular the Fontaine-Jannsen conjecture proven by Kato and Tsuji.
Classification : 14H52, 19E15, 14F30.$\break$
Keywords: torsion zero cycles, semistable elliptic curve, multiplicative reduction primes, Selmer group of the symmetric square, hyodo-Kato cohomology
@article{DOCMA_1997__2__a12,
     author = {Langer, Andreas},
     title = {Selmer groups and torsion zero cycles on the selfproduct of a semistable elliptic curve},
     journal = {Documenta mathematica},
     pages = {47--59},
     publisher = {mathdoc},
     volume = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a12/}
}
TY  - JOUR
AU  - Langer, Andreas
TI  - Selmer groups and torsion zero cycles on the selfproduct of a semistable elliptic curve
JO  - Documenta mathematica
PY  - 1997
SP  - 47
EP  - 59
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a12/
LA  - en
ID  - DOCMA_1997__2__a12
ER  - 
%0 Journal Article
%A Langer, Andreas
%T Selmer groups and torsion zero cycles on the selfproduct of a semistable elliptic curve
%J Documenta mathematica
%D 1997
%P 47-59
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a12/
%G en
%F DOCMA_1997__2__a12
Langer, Andreas. Selmer groups and torsion zero cycles on the selfproduct of a semistable elliptic curve. Documenta mathematica, Tome 2 (1997), pp. 47-59. http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a12/