Semigroup crossed products and Hecke algebras arising from number fields
Documenta mathematica, Tome 2 (1997), pp. 115-138.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Recently Bost and Connes considered a Hecke $C^*$-algebra arising from the ring inclusion of $\Bbb Z$ in $\Bbb Q$, and a $C^*$-dynamical system involving this algebra. Laca and Raeburn realized this algebra as a semigroup crossed product, and studied it using techniques they had previously developed for studying Toeplitz algebras. Here we associate Hecke algebras to general number fields, realize them as semigroup crossed products, and analyze their representations.
Classification : 46L55, 11R04, 22D25
Keywords: semigroup dynamical system, covariant representation, Hecke algebra
@article{DOCMA_1997__2__a10,
     author = {Arledge, Jane and Laca, Marcelo and Raeburn, Iain},
     title = {Semigroup crossed products and {Hecke} algebras arising from number fields},
     journal = {Documenta mathematica},
     pages = {115--138},
     publisher = {mathdoc},
     volume = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a10/}
}
TY  - JOUR
AU  - Arledge, Jane
AU  - Laca, Marcelo
AU  - Raeburn, Iain
TI  - Semigroup crossed products and Hecke algebras arising from number fields
JO  - Documenta mathematica
PY  - 1997
SP  - 115
EP  - 138
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a10/
LA  - en
ID  - DOCMA_1997__2__a10
ER  - 
%0 Journal Article
%A Arledge, Jane
%A Laca, Marcelo
%A Raeburn, Iain
%T Semigroup crossed products and Hecke algebras arising from number fields
%J Documenta mathematica
%D 1997
%P 115-138
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a10/
%G en
%F DOCMA_1997__2__a10
Arledge, Jane; Laca, Marcelo; Raeburn, Iain. Semigroup crossed products and Hecke algebras arising from number fields. Documenta mathematica, Tome 2 (1997), pp. 115-138. http://geodesic.mathdoc.fr/item/DOCMA_1997__2__a10/