Do global attractors depend on boundary conditions?
Documenta mathematica, Tome 1 (1996), pp. 215-228.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider global attractors of infinite dimensional dynamical systems given by dissipative partial differential equations $$u_t=u_{xx}+f(x,u,u_x) $$ on the unit interval $ 0 x 1 $ under separated, linear, dissipative boundary conditions. Global attractors are called orbit equivalent, if there exists a homeomorphism between them which maps orbits to orbits. The global attractor class is the set of all equivalence classes of global attractors arising for dissipative nonlinearities $f$. We show that the global attractor class does not depend on the choice of boundary conditions. In particular, Dirichlet and Neumann boundary conditions yield the same global attractor class.
@article{DOCMA_1996__1__a9,
     author = {Fiedler, Bernold},
     title = {Do global attractors depend on boundary conditions?},
     journal = {Documenta mathematica},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a9/}
}
TY  - JOUR
AU  - Fiedler, Bernold
TI  - Do global attractors depend on boundary conditions?
JO  - Documenta mathematica
PY  - 1996
SP  - 215
EP  - 228
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a9/
LA  - en
ID  - DOCMA_1996__1__a9
ER  - 
%0 Journal Article
%A Fiedler, Bernold
%T Do global attractors depend on boundary conditions?
%J Documenta mathematica
%D 1996
%P 215-228
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a9/
%G en
%F DOCMA_1996__1__a9
Fiedler, Bernold. Do global attractors depend on boundary conditions?. Documenta mathematica, Tome 1 (1996), pp. 215-228. http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a9/