Maximal indexes of Tits algebras
Documenta mathematica, Tome 1 (1996), pp. 229-243.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a split simply connected semisimple algebraic group over a field $F$ and let $C$ be the center of $G$. It is proved that the maximal index of the Tits algebras of all inner forms of $G_L$ over all field extensions $L/F$ corresponding to a given character $\chi$ of $C$ equals the greatest common divisor of the dimensions of all representations of $G$ which are given by the multiplication by $\chi$ being restricted to $C$. An application to the discriminant algebra of an algebra with an involution of the second kind is given.
Classification : 20G15
@article{DOCMA_1996__1__a8,
     author = {Merkurjev, A.S.},
     title = {Maximal indexes of {Tits} algebras},
     journal = {Documenta mathematica},
     pages = {229--243},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a8/}
}
TY  - JOUR
AU  - Merkurjev, A.S.
TI  - Maximal indexes of Tits algebras
JO  - Documenta mathematica
PY  - 1996
SP  - 229
EP  - 243
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a8/
LA  - en
ID  - DOCMA_1996__1__a8
ER  - 
%0 Journal Article
%A Merkurjev, A.S.
%T Maximal indexes of Tits algebras
%J Documenta mathematica
%D 1996
%P 229-243
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a8/
%G en
%F DOCMA_1996__1__a8
Merkurjev, A.S. Maximal indexes of Tits algebras. Documenta mathematica, Tome 1 (1996), pp. 229-243. http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a8/