On the nonexcellence of field extensions $F(\pi)/F$
Documenta mathematica, Tome 1 (1996), pp. 127-136.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For any $n\ge3$, we construct a field $F$ and an $n$-fold Pfister form $\varphi$ such that the field extension $F(\varphi)/F$ is not excellent. We prove that $F(\varphi)/F$ is universally excellent if and only if $\varphi$ is a Pfister neighbor of dimension $\le4$.
Classification : 11E04, 11E81, 12F20
Keywords: quadratic forms, Pfister forms, excellent field extensions
@article{DOCMA_1996__1__a14,
     author = {Izhboldin, O.T.},
     title = {On the nonexcellence of field extensions $F(\pi)/F$},
     journal = {Documenta mathematica},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a14/}
}
TY  - JOUR
AU  - Izhboldin, O.T.
TI  - On the nonexcellence of field extensions $F(\pi)/F$
JO  - Documenta mathematica
PY  - 1996
SP  - 127
EP  - 136
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a14/
LA  - en
ID  - DOCMA_1996__1__a14
ER  - 
%0 Journal Article
%A Izhboldin, O.T.
%T On the nonexcellence of field extensions $F(\pi)/F$
%J Documenta mathematica
%D 1996
%P 127-136
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a14/
%G en
%F DOCMA_1996__1__a14
Izhboldin, O.T. On the nonexcellence of field extensions $F(\pi)/F$. Documenta mathematica, Tome 1 (1996), pp. 127-136. http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a14/