Manis valuations and Prüfer extensions. I
Documenta mathematica, Tome 1 (1996), pp. 149-198.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We call a commutative ring extension $A \subset R$ Prüfer, if $A$ is an $R$-Prüfer ring in the sense of Griffin (Can. J. Math. 26 (1974)). These extensions relate to Manis valuations in much the same way as Prüfer domains to Krull valuations. We develop a basic theory of Prüfer extensions and give some examples. In the introduction we try to explain why Prüfer extensions deserve interest from a geometric viewpoint.
Classification : 13A18, 13B02, 13B30
@article{DOCMA_1996__1__a12,
     author = {Knebusch, Manfred and Zhang, Digen},
     title = {Manis valuations and {Pr\"ufer} extensions. {I}},
     journal = {Documenta mathematica},
     pages = {149--198},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a12/}
}
TY  - JOUR
AU  - Knebusch, Manfred
AU  - Zhang, Digen
TI  - Manis valuations and Prüfer extensions. I
JO  - Documenta mathematica
PY  - 1996
SP  - 149
EP  - 198
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a12/
LA  - en
ID  - DOCMA_1996__1__a12
ER  - 
%0 Journal Article
%A Knebusch, Manfred
%A Zhang, Digen
%T Manis valuations and Prüfer extensions. I
%J Documenta mathematica
%D 1996
%P 149-198
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a12/
%G en
%F DOCMA_1996__1__a12
Knebusch, Manfred; Zhang, Digen. Manis valuations and Prüfer extensions. I. Documenta mathematica, Tome 1 (1996), pp. 149-198. http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a12/