An invariant of quadratic forms over schemes
Documenta mathematica, Tome 1 (1996), pp. 449-478.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A ring homomorphism $e^0:\; W(X)\rightarrow EX$ from the Witt ring of a scheme $X$ into a proper subquotient $EX$ of the Grothendieck ring $K_0(X)$ is a natural generalization of the dimension index for a Witt ring of a field. In the case of an even dimensional projective quadric $X$, the value of $e^0$ on the Witt class of a bundle of an endomorphisms $\mathcal{ E}$ of an indecomposable component $\mathcal{ V}_0$ of the Swan sheaf $\mathcal{ U}$ with the trace of a product as a bilinear form $\theta$ is outside of the image of composition $W(F)\rightarrow W(X)\rightarrow E(X)$. Therefore the Witt class of $(\mathcal{ E},\theta)$ is not extended.
@article{DOCMA_1996__1__a1,
     author = {Szyjewski, Marek},
     title = {An invariant of quadratic forms over schemes},
     journal = {Documenta mathematica},
     pages = {449--478},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a1/}
}
TY  - JOUR
AU  - Szyjewski, Marek
TI  - An invariant of quadratic forms over schemes
JO  - Documenta mathematica
PY  - 1996
SP  - 449
EP  - 478
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a1/
LA  - en
ID  - DOCMA_1996__1__a1
ER  - 
%0 Journal Article
%A Szyjewski, Marek
%T An invariant of quadratic forms over schemes
%J Documenta mathematica
%D 1996
%P 449-478
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a1/
%G en
%F DOCMA_1996__1__a1
Szyjewski, Marek. An invariant of quadratic forms over schemes. Documenta mathematica, Tome 1 (1996), pp. 449-478. http://geodesic.mathdoc.fr/item/DOCMA_1996__1__a1/