On one characteristic of a conditional distribution of configuration graph
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 132-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider configuration graphs with $N$ vertices. The vertex degrees are independent identically distributed random variables and for any vertex of the graph the distribution of its degree $\eta$ satisfies the following condition: $$ \mathbf{P}\{\eta=k\}\sim \frac{d}{k^{g}\ln^h k},\quad k\to\infty, $$ where $d>0$, $h\geqslant 0$, $2 g3$. We obtain the limit distributions of the maximal degree of vertices in the configuration graph as $N,n\to\infty$ and $n/N^{(3g-4)/(2g-2)}\to\infty$ under the conditions that the sum of vertex degrees is $n$.
Keywords: configuration graph, vertex degree, limit distribution.
@article{DM_2023_35_4_a8,
     author = {I. A. Cheplyukova},
     title = {On one characteristic of a conditional distribution of configuration graph},
     journal = {Diskretnaya Matematika},
     pages = {132--145},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a8/}
}
TY  - JOUR
AU  - I. A. Cheplyukova
TI  - On one characteristic of a conditional distribution of configuration graph
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 132
EP  - 145
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a8/
LA  - ru
ID  - DM_2023_35_4_a8
ER  - 
%0 Journal Article
%A I. A. Cheplyukova
%T On one characteristic of a conditional distribution of configuration graph
%J Diskretnaya Matematika
%D 2023
%P 132-145
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a8/
%G ru
%F DM_2023_35_4_a8
I. A. Cheplyukova. On one characteristic of a conditional distribution of configuration graph. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 132-145. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a8/

[1] Hofstad R., Random Graphs and Complex Networks, Cambridge Univ. Press, 2017, 321 pp. | Zbl

[2] Durrett R., Random Graph Dynamics, Cambridge Univ. Press, 2007, 212 pp. | MR | Zbl

[3] Bollobas B., “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, Eur. J. Combin., 1:4 (1980), 311–316 | DOI | MR | Zbl

[4] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Perform. Eval., 55:1–2 (2004), 3–23 | DOI

[5] Pavlov Yu. L., Cheplyukova I. A., “Sluchainye grafy Internet-tipa i obobschennaya skhema razmescheniya”, Diskretnaya matematika, 20:3 (2008), 3–18 | DOI | MR | Zbl

[6] Pavlov Yu. L., Khvorostyanskaya E. V., “O predelnykh raspredeleniyakh stepenei vershin konfiguratsionnykh grafov s ogranichennym chislom reber”, Matematicheskii sbornik, 207:3 (2016), 93–110 | DOI | MR | Zbl

[7] Pavlov Yu. L., Cheplyukova I. A., “Predelnye raspredeleniya chisla vershin zadannoi stepeni konfiguratsionnogo grafa s ogranichennym chislom reber”, Teoriya veroyatnostei i ee primeneniya, 66:3 (2021), 468–486 | DOI

[8] Pavlov Yu. L., “Uslovnye konfiguratsionnye grafy so sluchainym parametrom stepennogo raspredeleniya stepenei”, Matematicheskii sbornik, 209:2 (2018), 120–137 | DOI | MR | Zbl

[9] Pavlov Yu. L., Cheplyukova I. A., “Ob asimptotike stepennoi struktury konfiguratsionnykh grafov s ogranichennym chislom reber”, Diskretnaya matematika, 30:1 (2018), 77–94 | DOI

[10] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2000, 256 pp.

[11] Chuprunov A. N., Fazekash I., “Analog obobschennoi skhemy razmescheniya. Predelnye teoremy dlya chisla yacheek zadannogo ob'ema”, Diskretnaya matematika, 24:1 (2012), 140–158 | DOI | Zbl

[12] Doney R. A., “One-side local large deviation and renewal theorems in the case of infinite mean”, Probab. Theory Relat. Fields, 107:4 (1997), 451–465 | DOI | MR | Zbl