On one characteristic of a conditional distribution of configuration graph
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 132-145
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider configuration graphs with $N$ vertices. The vertex degrees are independent identically distributed random variables and for any vertex of the graph the distribution of its degree $\eta$ satisfies the following condition:
$$
\mathbf{P}\{\eta=k\}\sim \frac{d}{k^{g}\ln^h k},\quad k\to\infty,
$$
where $d>0$, $h\geqslant 0$, $2 g3$. We obtain the limit distributions of the maximal degree of vertices in the configuration graph as $N,n\to\infty$ and $n/N^{(3g-4)/(2g-2)}\to\infty$ under the conditions that the sum of vertex degrees is $n$.
Keywords:
configuration graph, vertex degree, limit distribution.
@article{DM_2023_35_4_a8,
author = {I. A. Cheplyukova},
title = {On one characteristic of a conditional distribution of configuration graph},
journal = {Diskretnaya Matematika},
pages = {132--145},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a8/}
}
I. A. Cheplyukova. On one characteristic of a conditional distribution of configuration graph. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 132-145. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a8/