A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 126-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the complexity of computation of the threshold symmetric function $T_n^{n-1}$ by monotone switching networks is $\Omega(n \log \log n)$.
Keywords: switching networks, threshold functions, monotone computations.
@article{DM_2023_35_4_a7,
     author = {I. S. Sergeev},
     title = {A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$},
     journal = {Diskretnaya Matematika},
     pages = {126--131},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a7/}
}
TY  - JOUR
AU  - I. S. Sergeev
TI  - A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 126
EP  - 131
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a7/
LA  - ru
ID  - DM_2023_35_4_a7
ER  - 
%0 Journal Article
%A I. S. Sergeev
%T A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$
%J Diskretnaya Matematika
%D 2023
%P 126-131
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a7/
%G ru
%F DM_2023_35_4_a7
I. S. Sergeev. A lower bound on the monotone switching complexity of the threshold function $T_n^{n-1}$. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 126-131. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a7/