Scaling Graphs with Diameter Constraint
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of the gluing and cloning on operations of subgraphs on the graph diameter is studied. The vertex-diameter graphs are defined as graphs, all vertices of which belong to diametric chains. The possibilities of their use in scaling graphs with a diameter limitation are considered. Examples of scaling of trees, fat trees, and vertex-diameter graphs using the operations of cloning and gluing are given. The diameter and complexity of the synthesis of such graphs are estimated.
Keywords: trees, fat trees, vertex-diameter graphs, diameter, dominating set with neighborhood, gluing and cloning operations.
@article{DM_2023_35_4_a2,
     author = {M. A. Iordanskii},
     title = {Scaling {Graphs} with {Diameter} {Constraint}},
     journal = {Diskretnaya Matematika},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a2/}
}
TY  - JOUR
AU  - M. A. Iordanskii
TI  - Scaling Graphs with Diameter Constraint
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 46
EP  - 57
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a2/
LA  - ru
ID  - DM_2023_35_4_a2
ER  - 
%0 Journal Article
%A M. A. Iordanskii
%T Scaling Graphs with Diameter Constraint
%J Diskretnaya Matematika
%D 2023
%P 46-57
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a2/
%G ru
%F DM_2023_35_4_a2
M. A. Iordanskii. Scaling Graphs with Diameter Constraint. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 46-57. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a2/

[1] Iordanskii M. A., “Konstruktivnye opisaniya grafov”, Diskretnyi analiz i issledovanie operatsii, 3:4 (1996), 35–63 | MR | Zbl

[2] Ore O., Teoriya grafov, Nauka, M., 1968, 352 pp.

[3] Iordanskii M. A., Konstruktivnaya teoriya grafov i ee prilozheniya, Kirillitsa, N. Novgorod, 2016, 172 pp. https://iordanskyma.files.wordpress.com

[4] Iordanski M. A., Constructive Graph Theory: Generation Methods, Structure and Dynamic Characterization of Closed Classes of Graphs - A Survey, 2020, 18 pp., arXiv: 2011.10984

[5] Iordanskii M. A., “Klonirovanie grafov”, Problemy teoreticheskoi kibernetiki, Mater. XVIII mezhdunar. konf. (Penza, 19–23 iyunya 2017 g.), MAKS Press, M., 2017, 108–110

[6] Melentiev V. A., Shubin V. I., “On scalability of computing systems with compact topology”, Theor. Appl. Sci., 43:11 (2016), 164–169 | DOI

[7] Iordanskii M. A., “Operatsii klonirovaniya i diametr grafov”, Diskretnaya matematika, 34:2 (2022), 26–31 | DOI

[8] Iordanskii M. A., “O slozhnosti sinteza grafov operatsiyami klonirovaniya”, Diskretnaya matematika i ee prilozheniya, Mater. XIII mezhdunar. seminara (Moskva, 17–22 iyunya 2019 g.), Izd-vo mekh.-matem. f-ta MGU, M., 2019, 220–223

[9] Leiserson C. E., “Fat-trees: universal networks for hardware-efficient supercomputing”, IEEE Trans. Comput., 34:10 (1985), 892–901 | DOI

[10] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979, 338 pp. | MR | Zbl