Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_4_a2, author = {M. A. Iordanskii}, title = {Scaling {Graphs} with {Diameter} {Constraint}}, journal = {Diskretnaya Matematika}, pages = {46--57}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a2/} }
M. A. Iordanskii. Scaling Graphs with Diameter Constraint. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 46-57. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a2/
[1] Iordanskii M. A., “Konstruktivnye opisaniya grafov”, Diskretnyi analiz i issledovanie operatsii, 3:4 (1996), 35–63 | MR | Zbl
[2] Ore O., Teoriya grafov, Nauka, M., 1968, 352 pp.
[3] Iordanskii M. A., Konstruktivnaya teoriya grafov i ee prilozheniya, Kirillitsa, N. Novgorod, 2016, 172 pp. https://iordanskyma.files.wordpress.com
[4] Iordanski M. A., Constructive Graph Theory: Generation Methods, Structure and Dynamic Characterization of Closed Classes of Graphs - A Survey, 2020, 18 pp., arXiv: 2011.10984
[5] Iordanskii M. A., “Klonirovanie grafov”, Problemy teoreticheskoi kibernetiki, Mater. XVIII mezhdunar. konf. (Penza, 19–23 iyunya 2017 g.), MAKS Press, M., 2017, 108–110
[6] Melentiev V. A., Shubin V. I., “On scalability of computing systems with compact topology”, Theor. Appl. Sci., 43:11 (2016), 164–169 | DOI
[7] Iordanskii M. A., “Operatsii klonirovaniya i diametr grafov”, Diskretnaya matematika, 34:2 (2022), 26–31 | DOI
[8] Iordanskii M. A., “O slozhnosti sinteza grafov operatsiyami klonirovaniya”, Diskretnaya matematika i ee prilozheniya, Mater. XIII mezhdunar. seminara (Moskva, 17–22 iyunya 2019 g.), Izd-vo mekh.-matem. f-ta MGU, M., 2019, 220–223
[9] Leiserson C. E., “Fat-trees: universal networks for hardware-efficient supercomputing”, IEEE Trans. Comput., 34:10 (1985), 892–901 | DOI
[10] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979, 338 pp. | MR | Zbl