On cosets in the direct product of troups whose images by bijective mappings from factors to groups are cosets
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 18-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the images of cosets in the direct product of groups by bijective mappings from factors to groups. We prove necessary and sufficient conditions on bijective mappings for existence a coset in the direct product of two groups whose image is a coset. Cosets in the direct product of groups, whose images by bijective mappings from factors to groups are cosets, are described with some constraints on bijective mappings. Cosets in the direct product of elementary abelian 2-groups, whose images by multiplicative inverse permutation on factors are cosets, are described. Also cosets in the direct product of elementary abelian 2-groups, whose images by $s$-box of Kuznyechik, are described. Automorphisms of the direct product groups, which commute with bijective mappings from factors to groups, are described with some constraints on bijective mappings.
Keywords: invariant coset attack, self-similiarity attack, S-box layer, multiplicative inverse permutation, Kuznyechik block cipher.
@article{DM_2023_35_4_a1,
     author = {D. A. Burov},
     title = {On cosets in the direct product of troups whose images by bijective mappings from factors to groups are cosets},
     journal = {Diskretnaya Matematika},
     pages = {18--45},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a1/}
}
TY  - JOUR
AU  - D. A. Burov
TI  - On cosets in the direct product of troups whose images by bijective mappings from factors to groups are cosets
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 18
EP  - 45
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a1/
LA  - ru
ID  - DM_2023_35_4_a1
ER  - 
%0 Journal Article
%A D. A. Burov
%T On cosets in the direct product of troups whose images by bijective mappings from factors to groups are cosets
%J Diskretnaya Matematika
%D 2023
%P 18-45
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a1/
%G ru
%F DM_2023_35_4_a1
D. A. Burov. On cosets in the direct product of troups whose images by bijective mappings from factors to groups are cosets. Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 18-45. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a1/

[1] Burov D. A., “Podgruppy pryamogo proizvedeniya grupp, invariantnye otnositelno deistviya podstanovok na somnozhitelyakh”, Diskretnaya matematika, 31:4 (2019), 3–19 | DOI

[2] Burov D. A., “O svyazi lineinoi i raznostnoi kharakteristik otobrazhenii dvoichnykh vektornykh prostranstv s kharakteristikami rasseivaniya po blokam sistem imprimitivnosti gruppy sdvigov dvoichnogo vektornogo prostranstva”, Diskretnaya matematika, 35:1 (2023), 3–34 | DOI

[3] Glukhov M. M., “O 2-tranzitivnykh proizvedeniyakh regulyarnykh grupp podstanovok”, Trudy po diskretnoi matematike, 3 (2000), 37–52

[4] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.

[5] Barkan E., Biham E., “In how many ways can you write Rijndael”, Asiacrypt 2002, Lect. Notes Comput. Sci., 2501, 2002, 160–175 | DOI | MR | Zbl

[6] Beyne T., “Block cipher invariants as eigenvectors of correlation matrices”, J. Cryptology, 33 (2020), 1156–1183 | DOI | MR | Zbl

[7] Bidwell J. N. S., “Automorphisms of direct products of finite groups II”, Arch. Math., 91:2 (2008), 111–121 | DOI | MR | Zbl

[8] Bouillaguet C., Dunkelman O., Leurent G., Fouque P.-A., “Another look at complementation properties”, FSE 2010, Lect. Notes Comput. Sci., 6147, 2010, 347–364 | DOI | Zbl

[9] Bulygin S., Walter M., Buchmann J., “Full analysis of Printcipher with respect to invariant subspace attack: efficient key recovery and countermeasures”, Des. Codes Cryptogr., 73 (2014), 997–1022 | DOI | MR | Zbl

[10] Burov D. A., Pogorelov B. A., “An attack on 6 rounds of Khazad”, Matematicheskie voprosy kriptografii, 7:2 (2016), 35–46 | DOI | MR | Zbl

[11] Fomin D. B., “On the impossibility of an invariant attack on Kuznyechik”, J. Computer Virology and Hacking Techniques, 18:1 (2022), 61–67 | DOI

[12] Guo J., Jean J., Nicolic I., Qiao K., Sasaki Y., Sim S. M., “Invariant subspace attack against Midori64 and the resistant criteria for S-box designs”, IACR Trans. Symm. Cryptology, 2016:1 (2016), 33–56 | DOI | MR

[13] Kolomeec N., Bykov D., On the image of an affine subspace under the inverse function within a finite field, 2022, arXiv: 2206.14980

[14] Leander G., Minaud B., Ronjom S., “A generic approach to invariant subspace attacks: cryptanalysis of Robin, iScream and Zorro”, Eurocrypt 2015, Lect. Notes Comput. Sci., 9056, 2015, 254–283 | DOI | MR | Zbl

[15] Todo Y., Leander G., Sasaki Y., “Nonlinear invariant attack practical attack on full SCREAM, iSCREAM, and Midori64”, Asiacrypt 2016, Lect. Notes Comput. Sci., 10032, 2016, 3–33 | DOI | MR | Zbl

[16] Courtois N., “The inverse S-box, non-linear polynomial relations and cryptanalysis of block ciphers”, AES 2004, Lect. Notes Comput. Sci., 3373, 2004, 170–188 | DOI | MR

[17] Leander G., Abdelraheem M., Alkhzaimi H., Zenner E., “A cryptanalysis of PRINT cipher: the invariant subspace attack”, Crypto 2011, Lect. Notes Comput. Sci., 6841, 2011, 206–221 | DOI | MR | Zbl

[18] Ranea A., Preneel B., “On self-equivalence encodings in white-box implementations”, SAC, Lect. Notes Comput. Sci., 12804, 2020, 639–669 | DOI | MR

[19] Remak R., “Uber die darstellung der endlichen gruppen als untergruppen direct produkte”, J. Reine Angew. Math., 1 (1930), 1–44 | MR

[20] Ronjom S., Invariant subspaces in Simpira, IACR Cryptology Archive, Report 2016/248, 2016