Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 3-17
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T_{-n}$, $n \in\mathbb{N}$, be a hitting time of level -n for a random walk in random environment (RWRE). The exact asymptotics $P(T_{-n} = k)$ are proved. Here $k =k(n)$, $n$-k is even for every n and the ratio $k/n$ belongs to a compact set.
Keywords:
local limit theorems, large deviations, random walk in random environment, improper regeneration.
@article{DM_2023_35_4_a0,
author = {G. A. Bakai},
title = {Large {Deviations} for {First} {Hitting} time of {Random} {Walk} in {Random} {Environment} (lower level)},
journal = {Diskretnaya Matematika},
pages = {3--17},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/}
}
G. A. Bakai. Large Deviations for First Hitting time of Random Walk in Random Environment (lower level). Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/