Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T_{-n}$, $n \in\mathbb{N}$, be a hitting time of level -n for a random walk in random environment (RWRE). The exact asymptotics $P(T_{-n} = k)$ are proved. Here $k =k(n)$, $n$-k is even for every n and the ratio $k/n$ belongs to a compact set.
Keywords: local limit theorems, large deviations, random walk in random environment, improper regeneration.
@article{DM_2023_35_4_a0,
     author = {G. A. Bakai},
     title = {Large {Deviations} for {First} {Hitting} time of {Random} {Walk} in {Random} {Environment} (lower level)},
     journal = {Diskretnaya Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/}
}
TY  - JOUR
AU  - G. A. Bakai
TI  - Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 3
EP  - 17
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/
LA  - ru
ID  - DM_2023_35_4_a0
ER  - 
%0 Journal Article
%A G. A. Bakai
%T Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
%J Diskretnaya Matematika
%D 2023
%P 3-17
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/
%G ru
%F DM_2023_35_4_a0
G. A. Bakai. Large Deviations for First Hitting time of Random Walk in Random Environment (lower level). Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/

[1] Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[2] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compos. Math., 30:2 (1975), 145–168 | MR | Zbl

[3] Comets F., Gantert N., Zeitouni O., “Quenched, annealed and functional large deviations for one-dimensional random walk in random environment”, Probab. Theory Relat. Fields, 118:1 (2000), 65–114 | DOI | MR | Zbl

[4] Afanasev V. I., “Dvugranichnaya zadacha dlya sluchainogo bluzhdaniya v sluchainoi srede”, Teoriya veroyatn. i ee primen., 63:3 (2018), 417–430 | DOI

[5] Greven A., den Hollander F., “Large deviations for a random walk in random environment”, Ann. Probab., 22:3 (1994), 1381–1428 | DOI | MR | Zbl

[6] Dembo A., Peres Y., Zeitouni O., “Tail estimates for one-dimensional random walk in random environment”, Comm. Math. Physics, 181:3 (1996), 667–683 | DOI | MR | Zbl

[7] Mogulskii A. A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektr. matem. izv., 16 (2019), 21–41 | MR | Zbl

[8] Bakai G. A., “O kharakterizatsii veroyatnostei bolshikh uklonenii dlya regeneriruyuschikh posledovatelnostei”, Trudy MIAN, 316 (2022), 47–63 | DOI | MR

[9] Schaefer H. H., “Some spectral properties of positive linear operators”, Pacific J. Math., 10:3 (1960), 1009–1019 | DOI | MR | Zbl

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[11] Marek I., “Frobenius theory of positive operators: comparison theorems and applications”, SIAM J. Appl. Math., 19:3 (1970), 607–628 | DOI | MR | Zbl

[12] Bakai G. A., “O bolshikh ukloneniyakh momenta dostizheniya dalekogo urovnya sluchainym bluzhdaniem v sluchainoi srede”, Diskretnaya matematika, 34:4 (2022), 3–13 | DOI

[13] Bakai G. A., “Bolshie ukloneniya dlya obryvayuschegosya obobschennogo protsessa vosstanovleniya”, Teoriya veroyatn. i ee primen., 66:2 (2021), 261–283 | DOI | MR

[14] Schaefer H. H., “On the point spectrum of positive operators”, Proc. Amer. Math. Soc., 15:1 (1964), 56–60 | DOI | MR | Zbl