Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T_{-n}$, $n \in\mathbb{N}$, be a hitting time of level -n for a random walk in random environment (RWRE). The exact asymptotics $P(T_{-n} = k)$ are proved. Here $k =k(n)$, $n$-k is even for every n and the ratio $k/n$ belongs to a compact set.
Keywords: local limit theorems, large deviations, random walk in random environment, improper regeneration.
@article{DM_2023_35_4_a0,
     author = {G. A. Bakai},
     title = {Large {Deviations} for {First} {Hitting} time of {Random} {Walk} in {Random} {Environment} (lower level)},
     journal = {Diskretnaya Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/}
}
TY  - JOUR
AU  - G. A. Bakai
TI  - Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 3
EP  - 17
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/
LA  - ru
ID  - DM_2023_35_4_a0
ER  - 
%0 Journal Article
%A G. A. Bakai
%T Large Deviations for First Hitting time of Random Walk in Random Environment (lower level)
%J Diskretnaya Matematika
%D 2023
%P 3-17
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/
%G ru
%F DM_2023_35_4_a0
G. A. Bakai. Large Deviations for First Hitting time of Random Walk in Random Environment (lower level). Diskretnaya Matematika, Tome 35 (2023) no. 4, pp. 3-17. http://geodesic.mathdoc.fr/item/DM_2023_35_4_a0/