Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_3_a9, author = {A. V. Shklyaev}, title = {Large {Deviations} of {Bisexual} {Branching} {Process} in {Random} {Environment}}, journal = {Diskretnaya Matematika}, pages = {125--142}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/} }
A. V. Shklyaev. Large Deviations of Bisexual Branching Process in Random Environment. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 125-142. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/
[1] Daley D. J., “Extinction conditions for certain bisexual Galton–Watson branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 9:4 (1968), 315–322 | DOI | MR | Zbl
[2] Hull D. M., “A necessary condition for extinction in those bisexual Galton–Watson branching processes governed by superadditive mating functions”, J. Appl. Probab., 19:4 (1982), 847–850 | DOI | MR | Zbl
[3] Bruss F. T., “A note on extinction criteria for bisexual Galton–Watson processes”, J. Appl. Probab., 21:4 (1984), 915–919 | DOI | MR | Zbl
[4] Bagley J. H., “On the asymptotic properties of a supercritical bisexual branching process”, J. Appl. Probab., 23:3 (1986), 820–826 | DOI | MR | Zbl
[5] Gonzalez M., Molina M., “On the limit behaviour of a superadditive bisexual Galton–Watson branching process”, J. Appl. Probab., 33:4 (1996), 960–967 | DOI | MR | Zbl
[6] Gonzalez M., Molina M., Mota M., “A note on bisexual branching models with immigration”, J. Inter-American Stat. Inst., 49 (1999), 81–107 | MR | Zbl
[7] Gonzalez M., Molina M., Mota M., “On the limit behavior of a supercritical bisexual Galton–Watson branching process with immigration of mating units”, Stoch. Anal. Appl., 19:6 (2001), 933–943 | DOI | MR | Zbl
[8] Ma S., Xing Y., “Bisexual branching processes with immigration depending on the number of females and males”, Workshop on Branching Processes and Their Applications, Lect. Notes in Statist., 197, 2010, 269–277 | DOI | MR
[9] Ma S., “Bisexual Galton–Watson branching processes in random environments”, Acta Math. Appl. Sin, Engl. Ser., 22 (2006), 419–428 | DOI | MR
[10] Ma S., Molina M., “Two-sex branching processes with offspring and mating in a random environment”, J. Appl. Probab., 46:4 (2009), 993–1004 | DOI | MR | Zbl
[11] Xiao S., Liu X., Li Y., “A. S. convergence rate and $L^p$-convergence of bisexual branching processes in a random environment and varying environment”, Acta Math. Appl. Sin, Engl. Ser., 39 (2023), 337–353 | DOI | MR | Zbl
[12] Kozlov M. V., “O bolshikh ukloneniyakh vetvyaschikhsya protsessov v sluchainoi srede: geometricheskoe raspredelenie chisla potomkov”, Diskretnaya matematika, 18:2 (2006), 29–47 | DOI | Zbl
[13] Kozlov M. V., “O bolshikh ukloneniyakh strogo dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede s geometricheskim raspredeleniem chisla potomkov”, Teoriya veroyatnostei i ee primeneniya, 54:3 (2009), 439–465 | DOI | Zbl
[14] Bansaye V., Berestycki J., Large deviations for branching processes in random environment, 2008, 28 pp., arXiv: 0810.4991 | MR | Zbl
[15] Böinghoff C., Kersting G., “Upper large deviations of branching processes in a random environment — Offspring distributions with geometrically bounded tails”, Stoch. Proc. Appl., 120:10 (2010), 2064–2077 | DOI | MR | Zbl
[16] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282 (2013), 15–34 | DOI | MR | Zbl
[17] Dmitruschenkov D. V., “O bolshikh ukloneniyakh vetvyaschegosya protsessa v sluchainoi srede s immigratsiei v momenty vyrozhdeniya”, Diskretnaya matematika, 26:4 (2014), 36–42 | DOI
[18] Dmitruschenkov D. V., Shklyaev A. V., “Bolshie ukloneniya vetvyaschikhsya protsessov s immigratsiei v sluchainoi srede”, Diskretnaya matematika, 28:3 (2016), 28–48 | DOI
[19] Buraczewski D., Dyszewski P., “Precise large deviation estimates for branching process in random environment”, Ann. Inst. H. Poincaré. Probab. Statist., 58:3 (2022), 1669–1700 | MR | Zbl
[20] Shklyaev A. V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. II”, Diskretnaya matematika, 32:1 (2020), 135–156 | DOI
[21] Buraczewski D., Damek E., Mikosch T., Stochastic Models with Power-Law Tails: The Equation $X = AX + B$, Springer Series in Operations Research and Financial Engineering, 2016, 335 pp. | DOI | MR
[22] Shklyaev A. V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. I”, Diskretnaya matematika, 31:4 (2019), 102–115 | DOI
[23] Vatutin V. A., Topchii V. A., “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, Teoriya veroyatn. i ee primen., 42:1 (1997), 21–34 | DOI | MR | Zbl
[24] Dharmadhikari S. W., Fabian V., Jogdeo K., “Bounds on the moments of martingales”, Ann. Math. Statist., 39:5 (1968), 1719–1723 | DOI | MR | Zbl