Large Deviations of Bisexual Branching Process in Random Environment
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 125-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study large deviation probabilities of bisexual branching process in a random (i.i.d.) envrionment. Under several conditions on the mating function we introduce the associated random walk of the process. We also assume Cramer conditon for the step of the walk and moment conditions on the number of descendants of one pair. We find asymptotics of $\mathbf{P}(\ln N_n \in [x,x+\Delta_n))$ as $n\to\infty$ for $x/n$ from some domain and all $\Delta_n$, tending to zero sufficiently slowly. Similar results for bisexual branching process with immigration in a random envrionment are proved too.
Keywords: bisexual branching processes, random environment, large deviations, Cramer condition.
@article{DM_2023_35_3_a9,
     author = {A. V. Shklyaev},
     title = {Large {Deviations} of {Bisexual} {Branching} {Process} in {Random} {Environment}},
     journal = {Diskretnaya Matematika},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large Deviations of Bisexual Branching Process in Random Environment
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 125
EP  - 142
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/
LA  - ru
ID  - DM_2023_35_3_a9
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large Deviations of Bisexual Branching Process in Random Environment
%J Diskretnaya Matematika
%D 2023
%P 125-142
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/
%G ru
%F DM_2023_35_3_a9
A. V. Shklyaev. Large Deviations of Bisexual Branching Process in Random Environment. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 125-142. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/

[1] Daley D. J., “Extinction conditions for certain bisexual Galton–Watson branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 9:4 (1968), 315–322 | DOI | MR | Zbl

[2] Hull D. M., “A necessary condition for extinction in those bisexual Galton–Watson branching processes governed by superadditive mating functions”, J. Appl. Probab., 19:4 (1982), 847–850 | DOI | MR | Zbl

[3] Bruss F. T., “A note on extinction criteria for bisexual Galton–Watson processes”, J. Appl. Probab., 21:4 (1984), 915–919 | DOI | MR | Zbl

[4] Bagley J. H., “On the asymptotic properties of a supercritical bisexual branching process”, J. Appl. Probab., 23:3 (1986), 820–826 | DOI | MR | Zbl

[5] Gonzalez M., Molina M., “On the limit behaviour of a superadditive bisexual Galton–Watson branching process”, J. Appl. Probab., 33:4 (1996), 960–967 | DOI | MR | Zbl

[6] Gonzalez M., Molina M., Mota M., “A note on bisexual branching models with immigration”, J. Inter-American Stat. Inst., 49 (1999), 81–107 | MR | Zbl

[7] Gonzalez M., Molina M., Mota M., “On the limit behavior of a supercritical bisexual Galton–Watson branching process with immigration of mating units”, Stoch. Anal. Appl., 19:6 (2001), 933–943 | DOI | MR | Zbl

[8] Ma S., Xing Y., “Bisexual branching processes with immigration depending on the number of females and males”, Workshop on Branching Processes and Their Applications, Lect. Notes in Statist., 197, 2010, 269–277 | DOI | MR

[9] Ma S., “Bisexual Galton–Watson branching processes in random environments”, Acta Math. Appl. Sin, Engl. Ser., 22 (2006), 419–428 | DOI | MR

[10] Ma S., Molina M., “Two-sex branching processes with offspring and mating in a random environment”, J. Appl. Probab., 46:4 (2009), 993–1004 | DOI | MR | Zbl

[11] Xiao S., Liu X., Li Y., “A. S. convergence rate and $L^p$-convergence of bisexual branching processes in a random environment and varying environment”, Acta Math. Appl. Sin, Engl. Ser., 39 (2023), 337–353 | DOI | MR | Zbl

[12] Kozlov M. V., “O bolshikh ukloneniyakh vetvyaschikhsya protsessov v sluchainoi srede: geometricheskoe raspredelenie chisla potomkov”, Diskretnaya matematika, 18:2 (2006), 29–47 | DOI | Zbl

[13] Kozlov M. V., “O bolshikh ukloneniyakh strogo dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede s geometricheskim raspredeleniem chisla potomkov”, Teoriya veroyatnostei i ee primeneniya, 54:3 (2009), 439–465 | DOI | Zbl

[14] Bansaye V., Berestycki J., Large deviations for branching processes in random environment, 2008, 28 pp., arXiv: 0810.4991 | MR | Zbl

[15] Böinghoff C., Kersting G., “Upper large deviations of branching processes in a random environment — Offspring distributions with geometrically bounded tails”, Stoch. Proc. Appl., 120:10 (2010), 2064–2077 | DOI | MR | Zbl

[16] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282 (2013), 15–34 | DOI | MR | Zbl

[17] Dmitruschenkov D. V., “O bolshikh ukloneniyakh vetvyaschegosya protsessa v sluchainoi srede s immigratsiei v momenty vyrozhdeniya”, Diskretnaya matematika, 26:4 (2014), 36–42 | DOI

[18] Dmitruschenkov D. V., Shklyaev A. V., “Bolshie ukloneniya vetvyaschikhsya protsessov s immigratsiei v sluchainoi srede”, Diskretnaya matematika, 28:3 (2016), 28–48 | DOI

[19] Buraczewski D., Dyszewski P., “Precise large deviation estimates for branching process in random environment”, Ann. Inst. H. Poincaré. Probab. Statist., 58:3 (2022), 1669–1700 | MR | Zbl

[20] Shklyaev A. V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. II”, Diskretnaya matematika, 32:1 (2020), 135–156 | DOI

[21] Buraczewski D., Damek E., Mikosch T., Stochastic Models with Power-Law Tails: The Equation $X = AX + B$, Springer Series in Operations Research and Financial Engineering, 2016, 335 pp. | DOI | MR

[22] Shklyaev A. V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. I”, Diskretnaya matematika, 31:4 (2019), 102–115 | DOI

[23] Vatutin V. A., Topchii V. A., “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, Teoriya veroyatn. i ee primen., 42:1 (1997), 21–34 | DOI | MR | Zbl

[24] Dharmadhikari S. W., Fabian V., Jogdeo K., “Bounds on the moments of martingales”, Ann. Math. Statist., 39:5 (1968), 1719–1723 | DOI | MR | Zbl