Large Deviations of Bisexual Branching Process in Random Environment
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 125-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We study large deviation probabilities of bisexual branching process in a random (i.i.d.) envrionment. Under several conditions on the mating function we introduce the associated random walk of the process. We also assume Cramer conditon for the step of the walk and moment conditions on the number of descendants of one pair. We find asymptotics of $\mathbf{P}(\ln N_n \in [x,x+\Delta_n))$ as $n\to\infty$ for $x/n$ from some domain and all $\Delta_n$, tending to zero sufficiently slowly. Similar results for bisexual branching process with immigration in a random envrionment are proved too.
Keywords: bisexual branching processes, random environment, large deviations, Cramer condition.
@article{DM_2023_35_3_a9,
     author = {A. V. Shklyaev},
     title = {Large {Deviations} of {Bisexual} {Branching} {Process} in {Random} {Environment}},
     journal = {Diskretnaya Matematika},
     pages = {125--142},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/}
}
TY  - JOUR
AU  - A. V. Shklyaev
TI  - Large Deviations of Bisexual Branching Process in Random Environment
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 125
EP  - 142
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/
LA  - ru
ID  - DM_2023_35_3_a9
ER  - 
%0 Journal Article
%A A. V. Shklyaev
%T Large Deviations of Bisexual Branching Process in Random Environment
%J Diskretnaya Matematika
%D 2023
%P 125-142
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/
%G ru
%F DM_2023_35_3_a9
A. V. Shklyaev. Large Deviations of Bisexual Branching Process in Random Environment. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 125-142. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a9/