Hadamard square of series connected linear codes
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 100-124
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Series connected codes are generated by matrices obtained by series connected generating matrices of other linear codes. We find an estimate for the probability that the Hadamard square of series connected random linear codes coincides with the Cartesian product of the Hadamard squares of the linear codes involved in the connection.
Keywords: the Hadamard square, Schur square, Hadamard product of linear codes, Schur product of linear codes, series connected linear codes.
@article{DM_2023_35_3_a8,
     author = {I. V. Chizhov},
     title = {Hadamard square of series connected linear codes},
     journal = {Diskretnaya Matematika},
     pages = {100--124},
     year = {2023},
     volume = {35},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a8/}
}
TY  - JOUR
AU  - I. V. Chizhov
TI  - Hadamard square of series connected linear codes
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 100
EP  - 124
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a8/
LA  - ru
ID  - DM_2023_35_3_a8
ER  - 
%0 Journal Article
%A I. V. Chizhov
%T Hadamard square of series connected linear codes
%J Diskretnaya Matematika
%D 2023
%P 100-124
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a8/
%G ru
%F DM_2023_35_3_a8
I. V. Chizhov. Hadamard square of series connected linear codes. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 100-124. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a8/

[1] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 369–381 | DOI | MR | Zbl

[2] Chen H., Cramer R., “Algebraic geometric secret sharing schemes and secure multi-party computations over small fields”, CRYPTO 2006, Lect. Notes Comput. Sci., 4117, 2006, 521–536 | DOI | MR | Zbl

[3] Borodin M. A., Chizhov I. V., “Effektivnaya ataka na kriptosistemu Mak-Elisa, postroennuyu na osnove kodov Rida–Mallera”, Diskretnaya matematika, 26:1 (2014), 10–20 | DOI | Zbl

[4] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, PQCrypto 2010, Lect. Notes Comput. Sci., 6061, 2010, 61–72 | DOI | MR | Zbl

[5] Couvreur C., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.-P., “Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes”, Des., Codes Cryptogr., 73:2 (2014), 641–666 | DOI | MR | Zbl

[6] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory and Applications, CIM Ser. Math. Sci., 3, 2015, 133–140 | DOI | MR | Zbl

[7] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63:1 (2017), 404–427 | DOI | MR | Zbl

[8] Couvreur A., Otmani A., Tillich J.-P., Gauthier-Umaña V., “A polynomial-time attack on the BBCRS scheme”, PKC 2015, Lect. Notes Comput. Sci., 9020, 2015, 175–193 | DOI | MR | Zbl

[9] Otmani A., Kalachi H. T., “Square code attack on a modified Sidelnikov cryptosystem”, C2SI 2015, Lect. Notes Comput. Sci., 9084, 2015, 173–183 | DOI | MR | Zbl

[10] Faugére J.-C., Gauthier-Umaña V., Otmani A., Perret L., Tillich J.-P., “A distinguisher for high-rate McEliece cryptosystems”, IEEE Trans. Inf. Theory, 59:10 (2013), 6830–6844 | DOI | MR | Zbl

[11] Cascudo I., Cramer R., Mirandola D., Zémor G., “Squares of random linear codes”, IEEE Trans. Inf. Theory, 61:3 (2015), 1159–1173 | DOI | MR | Zbl

[12] Bardet M., Bertin M., Couvreur A., Otmani A., “Practical algebraic attack on DAGS”, CBC 2019, Lect. Notes Comput. Sci., 11666, 2019, 86–101 | DOI

[13] Chizhov I. V., Konyukhov S. A., Davletshina A. M., “Effektivnaya strukturnaya ataka na kriptosistemu Mak-Elisa–Sidelnikova”, Int. J. Open Inf. Technol., 8:7 (2020), 1–10

[14] Chizhov I. V., Popova E. A., “Strukturnaya ataka na kriptosistemy tipa Mak-Elisa–Sidelnikova, postroennaya na osnove kombinirovaniya sluchainykh kodov s kodami Rida–Mallera”, Int. J. Open Inf. Technol., 8:6 (2020), 24–33

[15] Deundyak V. M., Kosolapov Y. V., “On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes”, XVI Int. Symp. “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), IEEE, 2019, 143–148

[16] Hall J. I., Notes on Coding Theory, Chapter 3: Linear Codes, Dept. Mathematics, Michigan State Univ., 2015 users.math.msu.edu/users/halljo/classes/CODENOTES/Linear.pdf

[17] Chizhov I. V., “Kvadrat Adamara i obobschennoe minimalnoe rasstoyanie koda Rida–Mallera poryadka 2”, Diskretnaya matematika, 35:1 (2023), 128–152 | DOI

[18] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | Zbl

[19] Egorova E., Kabatiansky G., Krouk E., Tavernier C., “A new code-based public-key cryptosystem resistant to quantum computer attacks”, J. Phys. Conf. Ser., 1163 (2019), 012061, IOP Science | DOI