Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_3_a8, author = {I. V. Chizhov}, title = {Hadamard square of linear codes pasted side-by-side}, journal = {Diskretnaya Matematika}, pages = {100--124}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a8/} }
I. V. Chizhov. Hadamard square of linear codes pasted side-by-side. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 100-124. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a8/
[1] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 369–381 | DOI | MR | Zbl
[2] Chen H., Cramer R., “Algebraic geometric secret sharing schemes and secure multi-party computations over small fields”, CRYPTO 2006, Lect. Notes Comput. Sci., 4117, 2006, 521–536 | DOI | MR | Zbl
[3] Borodin M. A., Chizhov I. V., “Effektivnaya ataka na kriptosistemu Mak-Elisa, postroennuyu na osnove kodov Rida–Mallera”, Diskretnaya matematika, 26:1 (2014), 10–20 | DOI | Zbl
[4] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, PQCrypto 2010, Lect. Notes Comput. Sci., 6061, 2010, 61–72 | DOI | MR | Zbl
[5] Couvreur C., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.-P., “Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes”, Des., Codes Cryptogr., 73:2 (2014), 641–666 | DOI | MR | Zbl
[6] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory and Applications, CIM Ser. Math. Sci., 3, 2015, 133–140 | DOI | MR | Zbl
[7] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63:1 (2017), 404–427 | DOI | MR | Zbl
[8] Couvreur A., Otmani A., Tillich J.-P., Gauthier-Umaña V., “A polynomial-time attack on the BBCRS scheme”, PKC 2015, Lect. Notes Comput. Sci., 9020, 2015, 175–193 | DOI | MR | Zbl
[9] Otmani A., Kalachi H. T., “Square code attack on a modified Sidelnikov cryptosystem”, C2SI 2015, Lect. Notes Comput. Sci., 9084, 2015, 173–183 | DOI | MR | Zbl
[10] Faugére J.-C., Gauthier-Umaña V., Otmani A., Perret L., Tillich J.-P., “A distinguisher for high-rate McEliece cryptosystems”, IEEE Trans. Inf. Theory, 59:10 (2013), 6830–6844 | DOI | MR | Zbl
[11] Cascudo I., Cramer R., Mirandola D., Zémor G., “Squares of random linear codes”, IEEE Trans. Inf. Theory, 61:3 (2015), 1159–1173 | DOI | MR | Zbl
[12] Bardet M., Bertin M., Couvreur A., Otmani A., “Practical algebraic attack on DAGS”, CBC 2019, Lect. Notes Comput. Sci., 11666, 2019, 86–101 | DOI
[13] Chizhov I. V., Konyukhov S. A., Davletshina A. M., “Effektivnaya strukturnaya ataka na kriptosistemu Mak-Elisa–Sidelnikova”, Int. J. Open Inf. Technol., 8:7 (2020), 1–10
[14] Chizhov I. V., Popova E. A., “Strukturnaya ataka na kriptosistemy tipa Mak-Elisa–Sidelnikova, postroennaya na osnove kombinirovaniya sluchainykh kodov s kodami Rida–Mallera”, Int. J. Open Inf. Technol., 8:6 (2020), 24–33
[15] Deundyak V. M., Kosolapov Y. V., “On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes”, XVI Int. Symp. “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), IEEE, 2019, 143–148
[16] Hall J. I., Notes on Coding Theory, Chapter 3: Linear Codes, Dept. Mathematics, Michigan State Univ., 2015 users.math.msu.edu/users/halljo/classes/CODENOTES/Linear.pdf
[17] Chizhov I. V., “Kvadrat Adamara i obobschennoe minimalnoe rasstoyanie koda Rida–Mallera poryadka 2”, Diskretnaya matematika, 35:1 (2023), 128–152 | DOI
[18] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | Zbl
[19] Egorova E., Kabatiansky G., Krouk E., Tavernier C., “A new code-based public-key cryptosystem resistant to quantum computer attacks”, J. Phys. Conf. Ser., 1163 (2019), 012061, IOP Science | DOI