Invariance principle for numbers of particles in cells of a general allocation scheme
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 81-99
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\eta_1,\dots\eta_N$ be a generalized allocation scheme of $n$ particles over $N$ cells defined by independent random variables $\xi_1,\dots,\xi_N$ having power series distribution with parameter $\beta$. Denote by $m(\beta)$ and $\sigma^2(\beta)$ an expectation and a variance of $\xi_i$. Let $\beta$ be such that $\frac{n}{N}=m(\beta)$. We consider random processes $X_{n,N}(t)=\sum_{i=1}^{[tN]}\eta_i$ and $Y_{n,N}(t)=n^{-1/2}(X_{n,N}(t)-[tN]\frac{n}{N})$, $0\le t\le 1$. We find conditions under which for $n,N\to\infty$ the random processes $\sigma_{-1}(\beta)\sqrt{\frac{n}{N}}Y_{n,N}$ converge in distribution in the Skhorohod space to a Brounian bridge, and conditions ubder which for fixes $n$ and $N\to\infty$ the random processes $X_{n,N}$ converge in distribution in the Skhorohod space to $nF_n$, where $F_n$ is an empirical process.
Keywords:
invariance principle, generalized allocation scheme, Poisson limit theorem, local limit theorem, empirical process, Brownian bridge.
@article{DM_2023_35_3_a7,
author = {I. Fazekas and A. N. Chuprunov},
title = {Invariance principle for numbers of particles in cells of a general allocation scheme},
journal = {Diskretnaya Matematika},
pages = {81--99},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/}
}
TY - JOUR AU - I. Fazekas AU - A. N. Chuprunov TI - Invariance principle for numbers of particles in cells of a general allocation scheme JO - Diskretnaya Matematika PY - 2023 SP - 81 EP - 99 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/ LA - ru ID - DM_2023_35_3_a7 ER -
I. Fazekas; A. N. Chuprunov. Invariance principle for numbers of particles in cells of a general allocation scheme. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 81-99. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/