Invariance principle for numbers of particles in cells of a general allocation scheme
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 81-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\eta_1,\dots\eta_N$ be a generalized allocation scheme of $n$ particles over $N$ cells defined by independent random variables $\xi_1,\dots,\xi_N$ having power series distribution with parameter $\beta$. Denote by $m(\beta)$ and $\sigma^2(\beta)$ an expectation and a variance of $\xi_i$. Let $\beta$ be such that $\frac{n}{N}=m(\beta)$. We consider random processes $X_{n,N}(t)=\sum_{i=1}^{[tN]}\eta_i$ and $Y_{n,N}(t)=n^{-1/2}(X_{n,N}(t)-[tN]\frac{n}{N})$, $0\le t\le 1$. We find conditions under which for $n,N\to\infty$ the random processes $\sigma_{-1}(\beta)\sqrt{\frac{n}{N}}Y_{n,N}$ converge in distribution in the Skhorohod space to a Brounian bridge, and conditions ubder which for fixes $n$ and $N\to\infty$ the random processes $X_{n,N}$ converge in distribution in the Skhorohod space to $nF_n$, where $F_n$ is an empirical process.
Keywords: invariance principle, generalized allocation scheme, Poisson limit theorem, local limit theorem, empirical process, Brownian bridge.
@article{DM_2023_35_3_a7,
     author = {I. Fazekas and A. N. Chuprunov},
     title = {Invariance principle for numbers of particles in cells of a general allocation scheme},
     journal = {Diskretnaya Matematika},
     pages = {81--99},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/}
}
TY  - JOUR
AU  - I. Fazekas
AU  - A. N. Chuprunov
TI  - Invariance principle for numbers of particles in cells of a general allocation scheme
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 81
EP  - 99
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/
LA  - ru
ID  - DM_2023_35_3_a7
ER  - 
%0 Journal Article
%A I. Fazekas
%A A. N. Chuprunov
%T Invariance principle for numbers of particles in cells of a general allocation scheme
%J Diskretnaya Matematika
%D 2023
%P 81-99
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/
%G ru
%F DM_2023_35_3_a7
I. Fazekas; A. N. Chuprunov. Invariance principle for numbers of particles in cells of a general allocation scheme. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 81-99. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a7/

[1] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Lit. matem. sb., 8:1 (1968), 53–63 | Zbl

[2] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2000, 256 pp.

[3] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[4] Afanasev V. I., “Sluchainye bluzhdaniya i vetvyaschiesya protsessy”, Lekts. kursy NOTs, 6, MIAN, M., 2007, 3–187 | DOI

[5] Chuprunov A. N., “O chisle chastits iz otmechennogo mnozhestva yacheek v obobschennoi skheme razmescheniya”, Diskretnaya matematika, 34:1 (2022), 141–152 | DOI | MR

[6] Liggett T. M., “An invariance principle for conditioned sums of independent random variables”, J. Math. Mech., 18:6 (1968), 559–570 | MR | Zbl

[7] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 222 pp.

[8] Kolchin A. V., “Predelnye teoremy dlya obobschennoi skhemy razmescheniya”, Diskretnaya matematika, 15:4 (2003), 148–157 | DOI | Zbl

[9] Chuprunov A., Fazekas I., “Poisson limit theorems for the generalized allocation scheme”, Ann. Univ. Sci. Budapest, Sect. Comp., 49 (2019), 77–96 | MR | Zbl

[10] Trunov A. N., “Predelnye teoremy v zadache o razmeschenii odinakovykh chastits po razlichnym yacheikam”, Tr. MIAN SSSR, 177 (1986), 157–175 | MR

[11] Chuprunov A., Fazekas I., “On the number of empty cells in the allocation scheme of indistinguishable particles”, Ann. Univ. Mariae Curie-Sklodowska, 74:1 (2020), 15–29 | DOI | MR | Zbl

[12] Abdushukurov F. A., Chuprunov A. N., “Poisson limit theorems in an allocation scheme with an even number of particles in each cell”, Lobachevskii J. Math., 41:3 (2020), 289–297 | DOI | MR | Zbl

[13] Chuprunov A. N., Fazekas I., “On numbers of particles in cells in an allocation scheme having an even number of particles in each cell”, MDPI, Mathematics, 10:7 (1099) (2022) | MR