Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2023_35_3_a4, author = {V. G. Ryabov}, title = {New bounds on the nonlinearity of {PN} and {APN} functions over finite fields}, journal = {Diskretnaya Matematika}, pages = {45--59}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a4/} }
V. G. Ryabov. New bounds on the nonlinearity of PN and APN functions over finite fields. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 45-59. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a4/
[1] Glukhov M. M., “O priblizhenii diskretnykh funktsii lineinymi funktsiyami”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 | DOI | MR | Zbl
[2] Gorshkov S. P., Dvinyaninov A. V., “Nizhnyaya i verkhnyaya otsenki poryadka affinnosti preobrazovanii prostranstv bulevykh vektorov”, Prikladnaya diskretnaya matematika, 2(20) (2013), 14–18 | Zbl
[3] Ryabov V. G., “Maksimalno nelineinye funktsii nad konechnymi polyami”, Diskretnaya matematika, 33:1 (2021), 47–63 | DOI
[4] Ryabov V. G., “O priblizhenii vektornykh funktsii nad konechnymi polyami i ikh ogranichenii na lineinye mnogoobraziya affinnymi analogami”, Diskretnaya matematika, 34:2 (2022), 83–105 | DOI | MR
[5] Ryabov V. G., “K voprosu o priblizhenii vektornykh funktsii nad konechnymi polyami affinnymi analogami”, Matematicheskie voprosy kriptografii, 13:4 (2022), 125–146 | DOI | MR | Zbl
[6] Brinkmann M., Extended affine and CCZ equivalence up to dimension 4, Cryptology ePrint Archive, Paper 2019/316, 2019 https://eprint.iacr.org/2019/316
[7] Brinkmann M., Leander G., “On the classification of APN functions up to dimension five”, Des., Codes, Cryptogr., 49:1–3 (2008), 273–288 | DOI | MR | Zbl
[8] Carlet C., “Characterizations of the differential uniformity of vectorial functions by the Walsh transform”, IEEE Trans. Inf. Theory, 64:9 (2018), 6443–6453 | DOI | MR | Zbl
[9] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, 2021, 574 pp. | MR | Zbl
[10] Carlet C., “Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions”, IEEE Trans. Inf. Theory, 67:12 (2021), 8325–8334 | DOI | MR | Zbl
[11] Chen L., Fu F., “On the nonlinearity of multi-output Boolean functions”, Acta Sci. Natur. Univ. Nankai., 34:4 (2001), 28–33
[12] Dembowski P., Ostrom T. G., “Planes of order $n$ with collineation group of order $n^2$”, Math. Zeitschrift, 103:3 (1968), 239–258 | DOI | MR | Zbl
[13] Liu J., Chen L., “On nonlinearity of the second type of multi-output Boolean functions”, Chinese J. Eng. Math., 31:1 (2014), 9–22 | DOI | MR | Zbl
[14] Liu J., Mesnager S., Chen L., “On the nonlinearity of $S$-boxes and linear codes”, Cryptogr. Commun., 9:3 (2017), 345–361 | DOI | MR | Zbl
[15] Nyberg K., “Constructions of bent functions and difference sets”, EUROCRYPT 1990, Lect. Notes Comput. Sci., 473, 1991, 151–160 | DOI | MR | Zbl
[16] Nyberg K., “On the construction of highly nonlinear permutations”, EUROCRYPT 1992, Lect. Notes Comput. Sci., 658, 1993, 92–98 | DOI | MR | Zbl
[17] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64 | DOI | MR | Zbl
[18] Su M., Zha Z., Xu Z., “Another class of perfect nonlinear polynomial functions”, Math. Probl. Eng., 2013 (2013), 917507, 1–5 | MR