On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 37-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions for linear equivalence of piecewise-linear and partially defined piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$.
Keywords: nonlinear mixing transform, permutation of a finite field, orthomorphism, involution, $s$-box, piecewise-linear mapping, adapted spectral-differential method.
@article{DM_2023_35_3_a3,
     author = {A. V. Menyachikhin},
     title = {On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$},
     journal = {Diskretnaya Matematika},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a3/}
}
TY  - JOUR
AU  - A. V. Menyachikhin
TI  - On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 37
EP  - 44
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a3/
LA  - ru
ID  - DM_2023_35_3_a3
ER  - 
%0 Journal Article
%A A. V. Menyachikhin
%T On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$
%J Diskretnaya Matematika
%D 2023
%P 37-44
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a3/
%G ru
%F DM_2023_35_3_a3
A. V. Menyachikhin. On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 37-44. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a3/

[1] Anashkin A. V., “O chisle klassov CCZ ekvivalentnykh podstanovok na $V_{4}$”, Obozr. prikl. i promyshl. matem., 26:2 (2019), 138–139

[2] Bugrov A. D., “Kusochno-affinnye podstanovki konechnykh polei”, Prikl. diskretn. matem., 4:30 (2015), 5–23

[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, 2-e izd., Lan, SPb., 2015, 608 pp.

[4] Menyachikhin A. V., “Adaptirovannyi spektralno-raznostnyi metod postroeniya differentsialno 4-ravnomernykh kusochno-lineinykh podstanovok, ortomorfizmov, involyutsii polya $\mathbb{F}_{2^{n}}$”, Diskretnaya matematika, 35:2 (2023), 42–77 | DOI

[5] Pogorelov B. A., Pudovkina M. A., “Klassy kusochno-kvaziaffinnykh preobrazovanii na obobschennoi 2-gruppe kvaternionov”, Diskretnaya matematika, 34:1 (2022), 103–125 | DOI

[6] Pogorelov B. A., Pudovkina M. A., “Klassy kusochno-kvaziaffinnykh podstanovok na diedralnoi, poludiedralnoi i modulyarnoi maksimalno-tsiklicheskoi 2-gruppakh”, Diskretnaya matematika, 34:2 (2022), 50–66 | DOI

[7] Sachkov V. N., “Kombinatornye svoistva differentsialno 2-ravnomernykh podstanovok”, Matematicheskie voprosy kriptografii, 6:1 (2015), 159–179 | DOI | MR | Zbl

[8] Trishin A. E., “O pokazatele nelineinosti kusochno-lineinykh podstanovok additivnoi gruppy polya ${\mathbb F}_{2^{n}}$”, Prikladnaya diskretnaya matematika, 4:30 (2015), 32–42

[9] Biryukov A., De Canniere C., Braeken A., Preneel B., “A toolbox for cryptanalysis: linear and affine equivalence algorithms”, EUROCRYPT 2003, Lect. Notes Comput. Sci., 2656, 2003, 33–50 | DOI | MR | Zbl

[10] Brinkmann M., Leander G., “On the classification of APN functions up to dimension five”, Des., Codes, Cryptogr., 49:1–3 (2008), 273–288 | DOI | MR | Zbl

[11] Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J., “An APN permutation in dimension six”, Finite Fields Theory Appl., 518 (2010), 33–42 | DOI | MR | Zbl

[12] Carlet C., Charpin P., Zinoviev V., “Codes, bent functions, and permutations suitable for DES-like cryptosystems”, Des., Codes, Cryptogr., 15:2 (1998), 125–156 | DOI | MR | Zbl

[13] Evans A. B., Orthomorphism Graphs of Groups, Lect. Notes Math., 1535, Springer, 1992, 116 pp. | DOI | MR | Zbl

[14] Lambin B., Derbez P., Fouque P.-A., “Linearly equivalent s-boxes and the division property”, Des., Codes, Cryptogr., 88:10 (2020), 2207–2231 | DOI | MR | Zbl

[15] Leander G., Poschmann A., “On the classification of 4 bit $s$-boxes”, WAIFI 2007, Lect. Notes Comput. Sci., 4547, 2007, 159–176 | MR | Zbl

[16] Li Y., Wang M., “Permutation polynomials $EA$-equivalent to the inverse function over $GF(2^{n})$”, Cryptogr. Commun., 3:3 (2011), 175–186 | DOI | MR | Zbl

[17] Menyachikhin A.V., “Spectral-linear and spectral-differential methods for generating $s$-boxes having almost optimal cryptographic parameters”, Matematicheskie voprosy kriptografii, 8:2 (2017), 97–116 | DOI | MR | Zbl

[18] Niederreiter H., Winterhof A., “Cyclotomic $R$-orthomorphisms of finite fields”, Discrete Math., 295:1–3 (2005), 161–171 | DOI | MR | Zbl

[19] Saarinen M.-J. O., “Cryptographic analysis of all 4x4-bit $s$-boxes”, SAC 2011, Lect. Notes Comput. Sci., 7118, 2012, 118–133 | MR | Zbl

[20] Wan D. and Lidl R., “Permutation polynomials of the form $x^{r}f(x^{q-1}/d)$ and their group structure”, Monatsh. Math., 112:2 (1991), 149–163 | DOI | MR | Zbl

[21] Wells C., “Groups of permutation polynomials”, Monatsh. Math., 71:3 (1967), 248–262 | DOI | MR | Zbl

[22] Zhang W., Bao Z., Rijmen V., Liu M., “A new classification of 4-bit optimal $s$-boxes and its application to PRESENT, RECTANGLE and SPONGENT”, FSE 2015, Lect. Notes Comput. Sci., 9054, 2015, 494–515 | DOI | MR | Zbl