On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 37-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We study conditions for linear equivalence of piecewise-linear and partially defined piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$.
Keywords:
nonlinear mixing transform, permutation of a finite field, orthomorphism, involution, $s$-box, piecewise-linear mapping, adapted spectral-differential method.
@article{DM_2023_35_3_a3,
author = {A. V. Menyachikhin},
title = {On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$},
journal = {Diskretnaya Matematika},
pages = {37--44},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a3/}
}
A. V. Menyachikhin. On linear equivalence of piecewise-linear permutations of the field $\mathbb{F}_{2^{n}}$. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 37-44. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a3/