Branching processes in random environment with cooling
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 20-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a branching process in random environment can be analyzed via the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$, where $\xi_k = \ln \varphi_{\eta_k}'(1)$. Here $\varphi_x (t)$ and $\{ \eta_k \}_{k = 1}^{\infty}$ are the generating functions of the number of descendants of a paricle for given environment x and the random environment respectively. We study the probability of extinction of a branching process in random environment with cooling. In constract to classic BPRE, in this process every environment lasts for several generations. It turns out that this variant of BPRE is also closely related to a random walk $S_n = \tau_1 \xi_1 + \dotsb + \tau_n \xi_n$, where $\xi_k = \ln \varphi_{\eta_k}'(1)$. Here $\varphi_x (t)$ and $\{ \eta_k \}_{k = 1}^{\infty}$ are the generating functions of the number of descendants and the random environment respectively and $\tau_k$ is the duration of the $k$-th cooling. In this paper we find several sufficient conditions for extinction probability to be one or less than one correspondingly.
Keywords: branching processes, random environment, extinction probability, associated random walk.
@article{DM_2023_35_3_a2,
     author = {I. D. Korshunov},
     title = {Branching processes in random environment with cooling},
     journal = {Diskretnaya Matematika},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/}
}
TY  - JOUR
AU  - I. D. Korshunov
TI  - Branching processes in random environment with cooling
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 20
EP  - 36
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/
LA  - ru
ID  - DM_2023_35_3_a2
ER  - 
%0 Journal Article
%A I. D. Korshunov
%T Branching processes in random environment with cooling
%J Diskretnaya Matematika
%D 2023
%P 20-36
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/
%G ru
%F DM_2023_35_3_a2
I. D. Korshunov. Branching processes in random environment with cooling. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 20-36. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/

[1] Smith W. L., Wilkinson W. E., “On branching processes in random environments”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments: I. Extinction probabilities”, Ann. Math. Statist., 4:5 (1971), 1499–1520 | DOI | MR

[3] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl

[4] Birkner M., Geiger J., Kersting G., “Branching processes in random environment — a view on critical and subcritical cases”, Interacting stochastic systems, Springer, Berlin, 2005, 269–291 | DOI | MR

[5] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[6] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Process. Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl

[7] Avena L., “Random walk in cooling random environment: recurrence versus transience and mixed fluctuations”, Ann. Inst. H. Poincaré. Probab. Statist., 58:2 (2022), 967–1009 | MR | Zbl

[8] Avena L., Chino Y., da Costa C., den Hollander F., “Random walk in cooling random environment: ergodic limits and concentration inequalities”, Electron. J. Probab., 24 (2019), 38, 1–35 | DOI | MR

[9] Xie Y., “Functional weak limit of random walks in cooling random environment”, Electron. Commun. Probab., 25 (2020), 1–14 | DOI | MR

[10] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Fizmatlit, M., 1972, 416 pp.

[11] Shiryaev A.N., Veroyatnost-2, MTsNMO, M., 2004, 408 pp.

[12] Borel E., “Applications à l'arithmétique et à la théorie des fonctions”, Traité du Calcul des Probabilités et de ses applications,, v. 2, Gauthier-Villars, 1926, 100 pp.