Branching processes in random environment with freezing
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 20-36
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that a branching process in random environment (BPRE) can be analyzed via the associated random walk \begin{equation*}S_n = \xi_1 + \dotsb + \xi_n,\end{equation*} where $\xi_k = \ln \varphi_{\eta_k}'(1)$. Here $\{ \eta_k \}_{k = 1}^{\infty}$ is the random environment and $\varphi_x (t)$ is the generating function of the number of descendants of a particle for given environment $x$. We study the probability of extinction of a branching process in random environment with freezing: in constrast to classic BPRE, in this process every state $\eta_k$ of the environment lasts for given number $\tau_k$ of generations. It turns out that this variant of BPRE is also closely related to a random walk \begin{equation*}S_n = \tau_1 \xi_1 + \dotsb + \tau_n \xi_n.\end{equation*} We find several sufficient conditions for extinction probability of such process to be one or less than one correspondingly.
Keywords: branching processes, random environment, extinction probability, associated random walk.
@article{DM_2023_35_3_a2,
     author = {I. D. Korshunov},
     title = {Branching processes in random environment with freezing},
     journal = {Diskretnaya Matematika},
     pages = {20--36},
     year = {2023},
     volume = {35},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/}
}
TY  - JOUR
AU  - I. D. Korshunov
TI  - Branching processes in random environment with freezing
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 20
EP  - 36
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/
LA  - ru
ID  - DM_2023_35_3_a2
ER  - 
%0 Journal Article
%A I. D. Korshunov
%T Branching processes in random environment with freezing
%J Diskretnaya Matematika
%D 2023
%P 20-36
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/
%G ru
%F DM_2023_35_3_a2
I. D. Korshunov. Branching processes in random environment with freezing. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 20-36. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a2/

[1] Smith W. L., Wilkinson W. E., “On branching processes in random environments”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments: I. Extinction probabilities”, Ann. Math. Statist., 4:5 (1971), 1499–1520 | DOI | MR

[3] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee primen., 21:4 (1976), 813–825 | MR | Zbl

[4] Birkner M., Geiger J., Kersting G., “Branching processes in random environment — a view on critical and subcritical cases”, Interacting stochastic systems, Springer, Berlin, 2005, 269–291 | DOI | MR

[5] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[6] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Process. Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl

[7] Avena L., “Random walk in cooling random environment: recurrence versus transience and mixed fluctuations”, Ann. Inst. H. Poincaré. Probab. Statist., 58:2 (2022), 967–1009 | MR | Zbl

[8] Avena L., Chino Y., da Costa C., den Hollander F., “Random walk in cooling random environment: ergodic limits and concentration inequalities”, Electron. J. Probab., 24 (2019), 38, 1–35 | DOI | MR

[9] Xie Y., “Functional weak limit of random walks in cooling random environment”, Electron. Commun. Probab., 25 (2020), 1–14 | DOI | MR

[10] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Fizmatlit, M., 1972, 416 pp.

[11] Shiryaev A.N., Veroyatnost-2, MTsNMO, M., 2004, 408 pp.

[12] Borel E., “Applications à l'arithmétique et à la théorie des fonctions”, Traité du Calcul des Probabilités et de ses applications,, v. 2, Gauthier-Villars, 1926, 100 pp.