On random mappings with restrictions on component sizes
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 143-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{S}_{n}$ be a semigroup of mappings from the $n$-element set $X$ into itself and let $\mathfrak{S}_{n}(A)$ be a set of mappings from $\mathfrak{S}_{n}$ whose component sizes belong to the set $A$. By $\sigma_n=\sigma_n(A)$ we denote a random mapping having a uniform distribution on the set $\mathfrak{S}_{n}(A)$. Such objects were considered by A.N. Timashev in 2019. For a certain class of sets $A$ having positive densities in the set $N$ of natural numbers, the asymptotic number of elements of the set $\mathfrak{S}_{n}(A)$ is found for $n\rightarrow\infty$. An estimate is also obtained for the total variation distance between the $\sigma_n(A)$ mapping structure and the corresponding sequence of independent Poisson random variables.
Keywords: mappings with constraints on component sizes, total number of elements.
@article{DM_2023_35_3_a10,
     author = {A. L. Yakymiv},
     title = {On random mappings with restrictions on component sizes},
     journal = {Diskretnaya Matematika},
     pages = {143--163},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a10/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - On random mappings with restrictions on component sizes
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 143
EP  - 163
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a10/
LA  - ru
ID  - DM_2023_35_3_a10
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T On random mappings with restrictions on component sizes
%J Diskretnaya Matematika
%D 2023
%P 143-163
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a10/
%G ru
%F DM_2023_35_3_a10
A. L. Yakymiv. On random mappings with restrictions on component sizes. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 143-163. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a10/