Limit theorem for stationary distribution of a critical controlled branching process with immigration
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 5-19
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the sequence $\{{\xi_{n,t}}\}_{t\geq1} $ of controlled critical branching processes with immigration, where $n=1,2,\ldots$ is an integer parameter limiting the population size. It is shown that for $n\rightarrow\infty $ the stationary distributions of considered branching processes normalized by $\sqrt{n}$ converge to the distribution of a random variable whose square has a gamma distribution.
Keywords:
controlled branching processes, Markov chain, stationary distribution, limit theorem, gamma distribution, the method of moments } In conclusion, the author expresses his sincere gratitude to A.M. Zubkov for his attention to the work and valuable comments. \begin{thebibliography}{99.
@article{DM_2023_35_3_a1,
author = {V. I. Vinokurov},
title = {Limit theorem for stationary distribution of a critical controlled branching process with immigration},
journal = {Diskretnaya Matematika},
pages = {5--19},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/}
}
TY - JOUR AU - V. I. Vinokurov TI - Limit theorem for stationary distribution of a critical controlled branching process with immigration JO - Diskretnaya Matematika PY - 2023 SP - 5 EP - 19 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/ LA - ru ID - DM_2023_35_3_a1 ER -
V. I. Vinokurov. Limit theorem for stationary distribution of a critical controlled branching process with immigration. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/