Limit theorem for stationary distribution of a critical controlled branching process with immigration
Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the sequence $\{{\xi_{n,t}}\}_{t\geq1} $ of controlled critical branching processes with immigration, where $n=1,2,\ldots$ is an integer parameter limiting the population size. It is shown that for $n\rightarrow\infty $ the stationary distributions of considered branching processes normalized by $\sqrt{n}$ converge to the distribution of a random variable whose square has a gamma distribution.
Keywords: controlled branching processes, Markov chain, stationary distribution, limit theorem, gamma distribution, the method of moments } In conclusion, the author expresses his sincere gratitude to A.M. Zubkov for his attention to the work and valuable comments. \begin{thebibliography}{99.
@article{DM_2023_35_3_a1,
     author = {V. I. Vinokurov},
     title = {Limit theorem for stationary distribution of a critical controlled branching process with immigration},
     journal = {Diskretnaya Matematika},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/}
}
TY  - JOUR
AU  - V. I. Vinokurov
TI  - Limit theorem for stationary distribution of a critical controlled branching process with immigration
JO  - Diskretnaya Matematika
PY  - 2023
SP  - 5
EP  - 19
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/
LA  - ru
ID  - DM_2023_35_3_a1
ER  - 
%0 Journal Article
%A V. I. Vinokurov
%T Limit theorem for stationary distribution of a critical controlled branching process with immigration
%J Diskretnaya Matematika
%D 2023
%P 5-19
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/
%G ru
%F DM_2023_35_3_a1
V. I. Vinokurov. Limit theorem for stationary distribution of a critical controlled branching process with immigration. Diskretnaya Matematika, Tome 35 (2023) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/DM_2023_35_3_a1/

[1] Sevastyanov B. A., Zubkov A. M., “Reguliruemye vetvyaschiesya protsessy”, Teoriya veroyatnostei i ee primeneniya, 19:1 (1974), 15–25 | Zbl

[2] Yanev N. M., “Usloviya vyrozhdeniya $\varphi$-vetvyaschikhsya protsessov so sluchainym $\varphi$”, Teoriya veroyatnostei i ee primeneniya, 20:2 (1975), 433–440 | MR | Zbl

[3] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 224 pp.

[4] Spravochnik po teorii veroyatnostei i matematicheskoi statistike, ed. Korolyuk V. S., Nauka, M., 1978, 582 pp. | MR